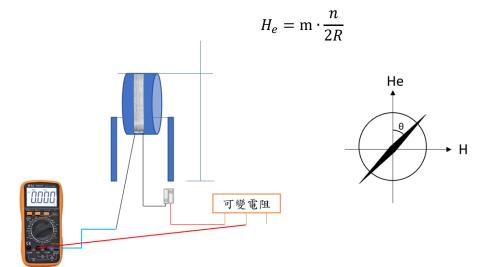
114 學年度普通型高級中等學校數理及資訊學科能力競賽

第5區複賽物理科實驗試題參考解

一. 實驗設計:

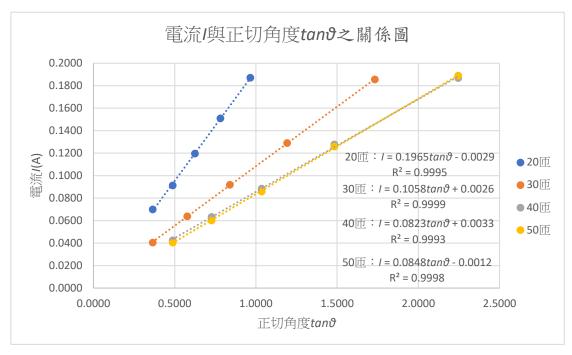

將裝置架設如左下圖,線圈的方向必須與指北針的方向一致(南北向),此時水平分量的地磁強度 H_o :

$$H_e = \frac{H}{\tan \theta} = \frac{nI}{2R \tan \theta}$$

$$\Rightarrow I = \frac{2RH_e}{n} \tan \theta$$

所以只要改變電流大小並記錄此時指針的角度變化,

做I與an heta的關係,此時斜率 \mathbb{m} 即為 $\dfrac{2RH_e}{n}$,而水平分量的磁場強度 H_e :



二. 實驗步驟:

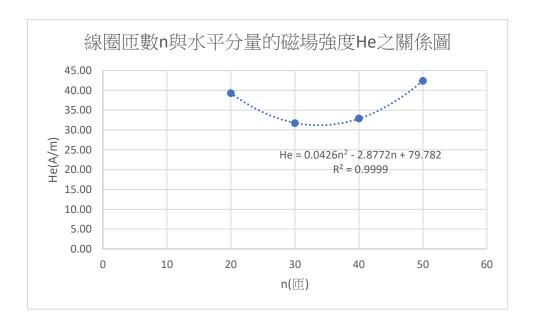
- 1. 在中空圓柱纏繞 50 匝的線圈。(每 10 匝用膠帶固定)。
- 2. 將線圈的兩端用剪刀剝去單芯線外皮。
- 3. 調整中空圓柱的高度使指針位於線圈的正中心。
- 4. 調整指北針的左右及前後位置於中空圓柱的正中心。
- 5. 調整指北針的 0 度位置與線圈方向一致為南北向。
- 6. 接上線路使其成一迴路。
- 7. 旋轉可變電阻改變電流大小紀錄此時的指針角度變化,取五組數據。
- 8. 改變線圈匝數為 40、30、20 匝並重複步驟 3~7。
- 9. 做I與 $\tan \theta$ 的關係找出不同線圈所測得之水平分量的地磁強度 H_e 。

三、數據分析:

半徑 R(m)	0.05		
匝數 n(匝)	角度 θ(度)	an heta	電流 I (A)
20	44	0. 9657	0. 1871
	38	0. 7813	0.1509
	32	0.6249	0.1197
	26	0.4877	0.0913
	20	0.3640	0.0700
30	60	1.7321	0. 1855
	50	1.1918	0.1290
	40	0.8391	0.0919
	30	0. 5774	0.0638
	20	0.3640	0. 0405
40	66	2. 2460	0.1869
	56	1.4826	0. 1278
	46	1.0355	0. 0885
	36	0.7265	0.0633
	26	0.4877	0.0424
50	66	2. 2460	0.1889
	56	1. 4826	0.1259
	46	1. 0355	0. 0859
	36	0.7265	0.0601
	26	0.4877	0.0405

第2頁,共3頁

30
$$ext{ } ext{ }$$


40 匝:
$$I = 0.0823 \tan \theta + 0.0033$$
 ⇒ $H_e = \text{m} \cdot \frac{n}{2R} = 0.0823 \cdot \frac{40}{2 \cdot 0.05} = 32.92 \text{ (A/m)}$

50 匝:
$$I = 0.0848 \tan \theta - 0.0012 \Rightarrow H_e = \text{m} \cdot \frac{n}{2R} = 0.0848 \cdot \frac{50}{2 \cdot 0.05} = 42.40 \text{ (A/m)}$$

此時發現不同匝數所得到的 H_e 並不相同,但可以發現匝數的增加與 H_e 的變化是一個開口向上的二次曲線關係,會有此情況發生推測原因為n較小時所產生的外加磁場強度對指針的影響較不明顯,故此時誤差較大;而當n增加時又會因為線圈纏繞過多導致此時的線圈半徑又不是0.05m進而增加量測誤差。

故做匝數 Π 與 H_e 之二次多項式關係,將所得之二次多項式做配方法,求得理想之 H_e 。

匝數 n(匝)	He(A/m)	
20	39. 30	
30	31.74	
40	32. 92	
50	42.40	

$$H_e = 0.0426n^2 - 2.8772n + 79.782$$

$$= 0.0426(n - \frac{2.8772}{2 \cdot 0.0426})^2 + 79.782 - 0.0426 \cdot (\frac{2.8772}{2 \cdot 0.0426})^2$$

$$\approx 0.0426(n - 33.77)^2 + 31.20$$

故所求 $H_e = 31.20(A/m)$ 。

四、實驗討論:

- 1. 若指北針未完全位於線圈的正中心,則所受的磁場可能不是線圈磁場的最大值,導致偏轉角度偏小,進而影響 $\tan \theta$ 的計算與後續 H_e 的推導。
- 2. 纏繞線圈時應盡量集中於圓柱中央區域,確保所有匝數的磁場均能有效疊加於指針位置,以提升 測量準確度。
- 3. 指北針位置若未精準置中,磁場方向與地磁場就不垂直, $\tan \theta$ 就會不準確。
- 4. 線圈纏繞厚度增加,實際半徑不再是 0. 05 m,造成磁場強度計算誤差。
- 5. 附近若有電器或金屬物體應遠離指北針,否則可能影響磁場強度之測量,進而造成誤差。