114 學年度普通型高級中等學校數理及資訊學科能力競賽

高雄區複賽物理科實驗試題參考解

一. 實驗設計:

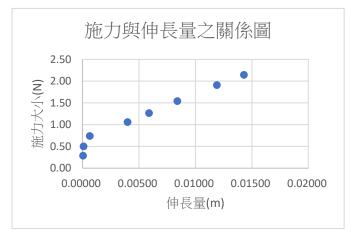
1. 請量測彈簧 A 之施力與伸長量的變化關係,並求得其彈性係數 kt: 將器材架設如圖,透過手向上施力拉伸彈簧,使其產生伸長。由於瓶裝水懸掛於彈簧下方,當 施力拉伸時,電子秤上的讀數會減少。此重量減少量即為手向上施力的大小,藉此可建立施力 大小與彈簧伸長量之間的關係。

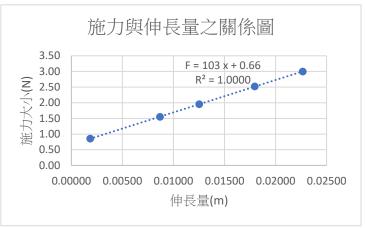
3. 請量測彈簧 B 之施力與壓縮量的變化關係,並求得其彈性係數 kc: 將器材架設如圖,先取下瓶裝水的瓶蓋,並於中央挖洞,使免洗筷可剛好穿過。於免洗筷上劃 記多個位置點,作為施力參考。透過手向下施力改變瓶蓋的位移,進而壓縮彈簧。(利用免洗 筷可以減少彈簧受力時的彎曲程度,增加壓縮量的準確性)此時電子秤的重量讀數會增加,該 變化量即為手向下施力的大小。藉此可建立施力大小與彈簧壓縮量之間的關係。

第1頁,共4頁

二. 實驗步驟:

彈簧 A:


- 1. 在瓶裝水上綁上兩條縫衣線,以確保彈簧受力均勻。
- 2. 開啟電子秤,校正並歸零,將瓶裝水置於秤面,並記錄其初始重量。
- 3. 將彈簧的一端掛勾綁上縫衣線,另一端掛勾連接瓶裝水的兩條縫衣線。
- 4. 在支架上架設橫桿,使縫衣線跨過橫桿,模擬定滑輪的作用以利施力。
- 5. 使用游標卡尺量測彈簧的原始長度(未施力狀態)。
- 6. 逐步施加約 20~30 克的力,並使用游標卡尺量測並記錄每次施力後彈簧的總長度。
- 7. 分析施力與彈簧伸長量之間的關係


彈簧 B:

- 1. 取一支免洗筷,於上方適當位置劃記基準點,並以每 0.5 公分間距劃記 6 個位置點。
- 2. 使用美工刀在瓶裝水的瓶蓋上挖洞,將步驟 1 的免洗筷穿過瓶蓋。
- 3. 將免洗筷上方以直角夾固定於支架,調整高度使其懸空。
- 4. 在免洗筷下方套上彈簧 B,可避免壓縮時彈簧彎曲,接著將彈簧 B 放置於電子秤上。
- 5. 施力調整瓶蓋至不同劃記位置,並記錄對應的電子秤讀數。
- 6. 分析施力大小與彈簧壓縮量之間的關係。

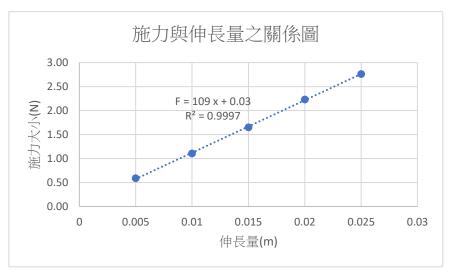
三、數據分析:

瓶裝水質量(g)	609. 9	彈簧原長(cm)		5. 000		彈簧 A
電子秤讀數(g)	第一次	518.9	453.8	409.6	350.3	302.4
	第二次	524.6	453. 1	409.9	355. 1	306.1
	第三次	527. 0	452. 0	411.0	350.1	304.5
	第四次	521.7	450. 2	410.5	355.8	302.6
	第五次	521.7	449. 9	410.5	350.6	303.8
彈簧總長度 (cm)	第一次	5. 235	5. 845	6. 235	6.830	7. 295
	第二次	5. 160	5. 850	6. 245	6. 765	7. 235
	第三次	5. 140	5. 865	6. 260	6.820	7. 240
	第四次	5. 200	5. 880	6. 260	6. 770	7. 295
	第五次	5. 190	5. 900	6. 265	6.800	7. 270
施力大小(g)	第一次	91.0	156. 1	200.3	259.6	307.5
	第二次	85. 3	156.8	200.0	254.8	303.8
	第三次	82. 9	157. 9	198. 9	259.8	305.4
	第四次	88. 2	159. 7	199.4	254. 1	307.3
	第五次	88. 2	160.0	199. 4	259. 3	306. 1
平均施力大小(g)		87. 1	158. 1	199.6	257. 5	306.0
平均彈簧總長度(cm)		5. 185	5. 868	6. 253	6. 797	7. 267
平均施力大小(N)		0.85	1.55	1.96	2. 52	3.00
平均彈簧伸長量(m)		0.00185	0.00868	0. 01253	0. 01797	0. 02267

1. 根據虎克定律 F=kx, 施力與彈簧變化量呈線性關係,右圖中的斜率即為彈性係數 kt。由施力-伸長量圖中可得彈簧 A 的彈性係數為:

$$k_{\rm t} = \frac{F}{x} = 103 \, (\text{N/m})$$

2.從左圖可觀察到,在小範圍(伸長量 < 0.2 公分)內,施力與伸長量的關係呈現**非線性**,表示彈簧尚未完全進入彈性反應區。此時施力主要用來克服彈簧的**臨界力**,伸長量變化不穩定,不符合 虎克定律。


當伸長量超過 0.2 公分後,施力與伸長量呈現穩定的**線性關係**,表示彈簧已突破臨界力,進入理 想彈性區段,此時施力遠大於臨界力,臨界力可忽略,符合虎克定律。

故:

- 在小範圍(< 0.2 公分)內,施力與伸長量關係為非線性,受臨界力影響。
- 在大範圍(> 0.2 公分)內,施力與伸長量關係為線性,符合虎克定律。

彈簧B

電子秤讀數(g)- [施力大小]	第一次	59.6	113. 2	168. 4	228.0	281. 7
	第二次	60.4	113. 2	168. 2	227. 2	282. 6
	第三次	60. 2	112.6	168.4	227. 5	282. 0
	第四次	59. 7	112.7	168.5	228. 1	281.8
	第五次	60.3	113. 2	168.0	227. 0	282. 0
平均電子秤讀數(g)		60.0	113.0	168. 3	227.6	282. 0
彈簧壓縮長度(cm)		0.5	1.0	1.5	2.0	2. 5
平均電子秤讀數(N)		0.59	1.11	1.65	2. 23	2. 76
彈簧壓縮長度(cm)		0.005	0.010	0.015	0.020	0. 025

3. 根據虎克定律 F=kx,施力與彈簧變化量呈線性關係,圖中的斜率即為彈性係數 kc。由施力-伸長量圖中可得彈簧 A 的彈性係數為:

$$kc = \frac{F}{x} = 109 \text{ (N/m)}$$

四、實驗討論:

- 1. 在量測彈簧 A 時,由於以手施力拉伸,須盡量穩定操作,避免電子秤讀數波動過大,以確保施力數值的準確性。
- 2. 使用游標尺量測彈簧 A 的總長度時,應避免過度夾持彈簧,以免施力與伸長量產生錯誤對應。
- 3. 量測彈簧 B 時,瓶蓋孔洞應盡量與免洗筷直徑相符,以利固定瓶蓋位置並穩定讀取電子秤數值。
- 4. 由於壓縮彈簧 B 時無法保證每次施力均勻,故須重複量測多次,以提升施力數值的代表性與準確性。
- 5. 壓縮彈簧過程中應避免彈簧彎曲,以免影響形變量的準確量測。