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Abstract

In this article, we investigate the synchronization of uncertain chaotic systems. Based upon the parameters identifi-
cation technique and a simple but efficient control method, we control the response system to be the drive system with
parameters unknown. The techniques are successfully applied to Lorenz system and Chen system. Furthermore, the
effect of external noise is under our discussion.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, the investigation of chaotic synchronization has attracted a lot of attention owing to various
potential applications, such as secure communication [1,2], animal and neuron systems [3,4], and the study of laser
dynamics [5]. A general feature of the chaotic system is its extreme sensitivity to initial conditions. In other words, slight
errors occurring in initial states of two similar oscillators will lead to completely different trajectories after enough tran-
sient time. Therefore, how to control two chaos systems to be synchronized has become an important topic in nonlinear
science.

Since the study made by Pecora and Carroll [6,7], many other papers about controlling chaos systems to be synchro-
nized have been published [8–18]. Most methods in those papers are valid only when parameters of the system are
known. However, the study of uncertain system (parameters unknown) is quite important because it is hard to receive
complete information about parameters in applications. Particularly, several authors have reported adaptive estimation
techniques to attain chaos synchronization when the model parameters are unknown [19–24]. With these techniques,
parameters identification and synchronization of chaotic systems can be achieved simultaneously. Recently, Yan and
Li provide a control method to synchronize two identical chaotic systems via the Lyapunov stability theory [25]. It
is natural but important to extend the idea to the chaotic systems with parameters unknown because the method is rel-
atively simple and efficient. In this paper, we investigate the parameters identification technique to synchronize uncer-
tain chaotic systems based on the method addressed by Yan and Li. The techniques are successfully applied to Lorenz
system and Chen system. Furthermore, the effect of external noise is under our discussion.
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The rest of this paper is organized as follows. Section 2 presents the synchronization of uncertain Lorenz systems.
Section 3 presents the result of Chen systems. Section 4 discusses the effect of external noise. Conclusions are finally
drawn in Section 5.
2. Lorenz system

First, let us consider the synchronization of uncertain Lorenz systems. Suppose two Lorenz systems are coupled uni-
directionally. That is, the second system is driven by the first one but the behavior of the first system is not affected by
the second one. The two systems are called the master and slave systems individually.

The master system:
_x1 ¼ r1ðy1 � x1Þ;
_y1 ¼ r1x1 � x1z1 � y1;

_z1 ¼ x1y1 � b1z1;

8><
>: ð1Þ
where the parameters r1, r1, and b1 are fixed and unknown.
The slave system:
_x2 ¼ r2ðy2 � x2Þ;
_y2 ¼ r2x2 � x1z2 � y2 þ uðx2 � x1Þ;
_z2 ¼ x1y2 � b2z2;

8><
>: ð2Þ
where r2, r2, and b2 are the estimated value of unknown parameters and u 2 R is the coupling parameter. We define the
parameter errors as ~r ¼ r2 � r1, ~r ¼ r2 � r1, ~b ¼ b2 � b1, and the errors of two systems as e1 = x2 � x1, e2 = y2 � y1,
e3 = z2 � z1. It is easy to show that synchronization in the Lorenz system is a result of stable error dynamics between
the drive system and the response system. Subtracting Eq. (1) from Eq. (2), a set of equations which govern the error
dynamics are then given by
_e1 ¼ r2ðe2 � e1Þ þ ~rðy1 � x1Þ;
_e2 ¼ r2e1 þ ~rx1 � x1e3 � e2 þ ue1;

_e3 ¼ x1e2 � b2e3 � ~bz1.

8><
>: ð3Þ
Then, the three-dimensional Lyapunov function is defined as V ¼ 1
2
ðe2

1 þ e2
2 þ e2

3 þ ~r2 þ ~r2 þ ~b2Þ, which is finite and lar-
ger than zero. The time rate of change of V along trajectories is given by _V ¼ e1 _e1 þ e2 _e2 þ e3 _e3 þ ~r _~rþ ~r _~r þ ~b _~b. Adopt-
ing the ideas from the parameters identification technique, we choose the adaptive formula of parameters as
_~r ¼ �ðy1 � x1Þe1;

_~r ¼ �x1e2;

_~b ¼ z1e3;

8><
>: ð4Þ
which govern the evolution of estimation parameters. Simultaneously, _V reduces to be
_V ¼ �r2e2
1 þ r2e2e1 þ r2e1e2 � e2

2 þ ue1e2 � b2e2
3. ð5Þ
With the simplest choice u = �(r2 + r2), the time rate of change of V turns out to be
_V ¼ �r2e2
1 � e2

2 � b2e2
3. ð6Þ
In other words, the error dynamics are globally asymptotically stable at the origin when r2 > 0 and b2 > 0. Even though
the estimated parameters would evolve with time passing, the three chaotic parameters are larger than zero in Lorenz
system. Therefore, we can restrict the parameters to be positive during evolution to ensure _V < 0. Then the synchro-
nization of uncertain chaotic systems is accomplished.

RK4 method is used to all of our simulations with time step being equal to 0.0001. We select the parameters of the
master system as r1 = 10, r1 = 28, b1 = 2.67 to ensure the chaotic behavior. The initial values are x1(0) = 1, y1(0) = 0,
z1(0) = 1 and x2(0) = 2, y2(0) = �1, z2(0) = �2. The parameters of response system start from r2(0) = 6, r2(0) = 12 and
b2(0) = 5. The numerical results are illustrated in Figs. 1 and 2. Fig. 1 shows the errors between two chaotic systems.
When the errors approach to zero, the synchronization of uncertain chaotic systems is realized. Fig. 2 shows the evo-
lutions of r2(t), r2(t), and b2(t). Obviously, with time passing, the estimated parameters are able to approach the
unknown parameters.



Fig. 1. The diagram presents the errors e1(t), e2(t) and e3(t) between two coupled Lorenz systems. e1(t) = x2(t) � x1(t) is labeled as a
solid line, e2(t) = y2(t) � y1(t) is labeled as a dotted line and e3(t) = z2(t) � z1(t) is labeled as a dash line.

Fig. 2. The diagram presents the parameters r2(t), r2(t) and b2(t) of the slave Lorenz systems. r2(t) is labeled as a solid line, r2(t) is
labeled as a dotted line and b2(t) is labeled as a dash line.
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3. Chen system

In this section, we take Chen system into consideration. In 1999, Chen found another chaotic attractor, which is
similar but topologically different from Lorenz system [26]. Due to its complex topological features, Chen system is rel-
atively difficult to be controlled as compared to Lorenz system, especially its rapid change in z-direction [27]. The non-
linear differential equations that describe the Chen system are
_x ¼ aðy � xÞ;
_y ¼ ðc� aÞx� xzþ cy;

_z ¼ xy � bz;

8><
>: ð7Þ
where a > 0, b > 0, c > 0 and c < a < 2c.
Now, we consider the synchronization of uncertain Chen systems via unidirectional coupling.
The master system:
_x1 ¼ a1ðy1 � x1Þ;
_y1 ¼ ðc1 � a1Þx1 � x1z1 þ c1y1;

_z1 ¼ x1y1 � b1z1;

8><
>: ð8Þ
and a1, b1, and c1 are fixed and unknown.
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The slave system:
Fig. 3.
as a so

Fig. 4.
labeled
_x2 ¼ a2ðy2 � x2Þ;
_y2 ¼ ðc2 � a2Þx2 � x1z2 þ c2y2 þ uðy2 � y1Þ;
_z2 ¼ x1y2 � b2z2;

8><
>: ð9Þ
a2, b2, c2 are the estimated parameters and u is the coupling variable. Similarly, we define ã = a2 � a1, ~b ¼ b2 � b1,
~c ¼ c2 � c1, e1 = x2 � x1, e2 = y2 � y1, e3 = z2 � z1, and the error dynamics can be decided as
_e1 ¼ a2ðe2 � e1Þ þ ~aðy1 � x1Þ;
_e2 ¼ ðc2 � a2Þe1 þ ð~c� ~aÞx1 � x1e3 þ c2e2 þ ~cy1 þ ue2;

_e3 ¼ x1e2 � b2e3 � ~bz1.

8><
>: ð10Þ
Let V be 1
2
ðe2

1 þ e2
2 þ e2

3 þ ~a2 þ ~b2 þ ~c2Þ, and the time rate of change of V becomes _V ¼ e1 _e1 þ e2 _e2 þ e3 _e3 þ ~a _~aþ ~b _~bþ ~c _~c.
Thus, the parameters adjustment equation can be chosen as
The diagram presents the synchronization errors e1(t), e2(t) and e3(t) of the unidirectional coupled Chen systems. e1(t) is labeled
lid line, e2(t) is labeled as a dotted line and e3(t) is labeled as a dash line.

The diagram presents the parameters a2(t), b2(t) and c2(t) of the slave Lorenz systems. a2(t) is labeled as a solid line, b2(t) is
as a dotted line and c2(t) is labeled as a dash line.



Fig. 5
intensi
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_~a ¼ x1e2 � ðy1 � x1Þe1;

_~b ¼ z1e3;

_~c ¼ �e2ðx1 þ y1Þ.

8>><
>>:

ð11Þ
Then the time rate of change of V will become
_V ¼ �a2e2
1 þ c2e1e2 þ ðc2 þ uÞe2

2 � b2e2
3. ð12Þ
If u ¼ � c2
2
þ4a2c2

4a2
� k2 (k > 0 and k 2 R), one has �a2e2

1 þ c2e1e2 þ ðc2 þ uÞe2
2 < 0 because the parameters of Chen system

are positive. Therefore, when the errors between two systems are unequal to zero, the Lyapunov function is asymptot-
ically stable at the origin. In other words, the synchronization can be achieved successfully.

The parameters of the master system are selected as the typical value, a1 = 35, b1 = 3 and c1 = 28. The initial con-
ditions are x1(0) = 1, y1(0) = 0, z1(0) = �1 and x2(0) = �1, y2(0) = 1, z2(0) = 2. The parameters of the response system
start from a2(0) = 48, b2(0) = 5, c2 = 19, and constant k = 2. The results of synchronization and parameters identifica-
tion are presented in Figs. 3 and 4, respectively.
4. Effects of external noise

In real physical systems, it is impossible to neglect the effect of external noise. Because the chaotic system depends
sensitively on a slight perturbation of signals, we have to ensure the synchronization and parameters identification are
robust to the external noise. In this manuscript, we focus on the Lorenz case. Reconsidering the drive system
. (a) Illustrates the relationship between ln(Mr) and noise intensity. (b) Illustrates the relationship between ln(Mp) and noise
ty.
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_x1 ¼ r1ðy1 � x1Þ;
_y1 ¼ r1x1 � x1z1 � y1 þ nðtÞ;
_z1 ¼ x1y1 � b1z1;

8><
>: ð13Þ
where n(t) is the Gaussian noise satisfying hn(t)i = 0 and hn(t)n(t 0)i = 2Dd(t � t 0) in which D is the noise intensity. Here,
h� � �i denotes the time average. Naturally, we evaluate mean-square error between the response system (x2,y2,z2) and the
drive system (x1,y1,z1) (denoted by Mr) after controlling. For parameters identification technique, it is also important to
calculate mean-square error between the parameters of two systems (Mp). The definition of M is
M ¼ 1

T

Z T

0

½S1ðtÞ � S2ðtÞ�2dt. ð14Þ
Fig. 5(a) and (b) shows the results of numerical simulation. We calculate mean-square errors under the condition
used in Section 2. In order to diminish the effect of transient signal, we start to calculate the mean-square error after
sufficient iteration times (2 · 106). The time step T is 5 · 105. We calculate the values over 100 times and average them to
eliminate fluctuation. Fig. 5(a) illustrates the relationship between ln(Mr) and noise intensity while (b) illustrates the
relationship between ln(Mp) and noise intensity. The relationship can be formularized as
Mr ¼ ðD� r1Þr2 � er3 ;

Mp ¼ ðD� p1Þ
p2 � ep3 ;

�
ð15Þ
where r1 = �0.02, r2 = 2.16, r3 = �1.86 and p1 = �0.03, p2 = �2.24, p3 = �1.64.
In Eq. (15), Mr and Mp become larger with the increase of noise density and follow two different power laws when

D 6 1.0. However, the results are acceptable in real applications. In other words, the techniques are robust to external
noise.
5. Conclusion

Based upon the simple control method and parameters identification technique, we synchronize the response system
to be the drive system. By using the Lorenz and the Chen systems, the chaotic synchronization is achieved exactly. In
addition, the noise analysis is under our discussion to ensure the validity in real physical systems. In fact, the electric
Lorenz circuit is useful in the field of secure communication, and the techniques may make it more applicable in such
field.
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[20] Chen S-H, Lü J-H. Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A

2002;299:353–8.
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Int J Nonlinear Sci Numer Simul 2004;5(2):171–82.
[23] Park JH. Adaptive synchronization of a unified chaotic system with an uncertain parameter. Int J Nonlinear Sci Numer Simul

2005;6(2):201–6.
[24] Ho M-C, Hung Y-C, Liu Z-Y, Jiang I-M. Reduced-order synchronization of chaotic systems with parameters unknown. Phys Lett

A 2006;348:251–9.
[25] Yan J-P, Li C-P. On synchronization of three chaotic systems. Chaos, Solitons & Fractals 2005;23:1683–8.
[26] Zhou T, Tang Y, Chen G. Complex dynamical behaviors of the chaotic Chen’s system. Int J Bifur Chaos 2003;13:2561–74.
[27] Ueta T, Chen G. Bifurcation analysis of Chen’s equation. Int J Bifur Chaos 2000;10:1917–31.


	On the synchronization of uncertain chaotic systems
	Introduction
	Lorenz system
	Chen system
	Effects of external noise
	Conclusion
	Acknowledgments
	References


