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This study presents an approach for distinguishing a driver from a response system. The proposed
method can be applied to both unidirectional or bidirectional interactions, and to identical or
structurally different systems. Compared with most previously proposed schemes, the present
method is so “simple” that the driver-response relationships can generally be detected using a direct
graphic way. On the other hand, quantitative estimation is also developed using the idea of the
correlation dimension. © 2008 American Institute of Physics. �DOI: 10.1063/1.2896093�

A major issue in nonlinear dynamics and nonlinear time
series analysis is the interplay among complex dynamic
systems. Of particular interest is how to assess the inter-
action between two systems via analyzing the interrela-
tion between their output signals. Up to now, many pre-
viously proposed schemes have either only been
applicable to the generalized synchronization regime, or
have had difficulty assessing the coupling direction in
structurally different systems. In particular, all suggested
schemes are so “complicated” that even for the simplest
case, i.e., the case involving unidirectionally coupled iden-
tical systems, large-scale computations are required to
distinguish driver-response relationships. This study sug-
gests a method of addressing this problem. The proposed
method can be applied to both weak and strong interac-
tions, and to both identical and structurally different sys-
tems. Furthermore, the proposed method is sufficiently
“simple” that, in most cases, it is even possible to directly
estimate the driver-response relationships graphically.
Additionally, a systematic technique based on the corre-
lation dimension is devised to quantify the coupling
asymmetry.

I. INTRODUCTION

Recently, considerable attention has been devoted to de-
tecting driver-response relationships between two interacting
systems, and various schemes have been designed to address
the problem.1–4 One of these schemes exploits the idea of
generalized synchronization of unidirectionally coupled sys-
tems, and detects the direction of coupling by examining the
correspondence between neighbors in the embedding spaces
of the driver and response.1,2,5 Another of these schemes,
based on the notion of phase synchronization6 of coupled
systems, uses the familiar result that weak interaction usually
first alters the phases of the state variables and then their
amplitudes, and thus proposes analyzing the relationship be-

tween the phases of the oscillators to estimate the direction
and strength of coupling.3 Additionally, for strongly coupled
systems, schemes based on information theory are also de-
veloped to achieve such goal.4,7 More recently, Romano
et al. introduced a method for detecting and quantifying the
asymmetry of the coupling between interacting systems
based on their recurrence properties.8 However, most
schemes are either only applicable in the generalized syn-
chronization regime, or have difficulty assessing the cou-
pling direction in structurally different systems. Moreover,
all schemes proposed to date are so “complicated” that even
for the simplest case, i.e., unidirectionally coupled identical
systems, there is no simple way to distinguish driver from
response relationships directly.

This work suggests an approach to reveal driver-
response relationships between interacting systems. The pro-
posed method can be applied to both weak and strong inter-
actions, and to identical or structurally different systems.
Furthermore, the proposed method is sufficiently “simple”
that, as will be demonstrated below, in most cases it is pos-
sible to directly distinguish the coupling direction graphi-
cally. On the other hand, a systematic technique is also de-
veloped to quantify the degree of asymmetry of the
interaction.

The outline of this paper is as follows. Section II first
introduces the basic idea of the proposed method, and then a
graphic way is presented in Sec. II A. Furthermore, in Sec.
II B, a quantitative description is developed by exploiting the
fractal correlation dimension. Finally, conclusions are given
in Sec. III.

II. THE APPROACH

The proposed approach is based on the observation that
the topological properties of the attractor set derived from a
so-called return map9 systematically change when coupling
is imposed on the underlying system. As demonstrated by
Lorenz,9 by following one of the variables �or their linear or
nonlinear combinations, i.e., a time series generated from the
state variables, as this study does� of an oscillator, it is pos-
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sible to produce a return map where the dynamics are at-
tracted to an almost one-dimensional set. Following this
lead, we can construct the return map from the time series,
e.g., xi�t�, as follows. Starting from some arbitrary point in
time, define tn as the time when xi�t� reaches its nth �local�
maximum, and Xn as the value of x at that moment. The
return map Xn+1 vs Xn can thus be constructed. For an iso-
lated oscillator, the map has an attractor that looks almost
one-dimensional. However, it is observed that, for a response
system, the fractal dimension is clearly biased away from
being one-dimensional except in situations of complete syn-
chronization. Indeed, the attractor exceeds one dimension

even in the case of very weak interactions. This phenomenon
occurs because the driven term can generally be seen as sto-
chastic disturbing with respect to the response system and
thus causes dispersion of the considered attractor set. In this
work, this study exploits the concept of correlation
dimension10 to quantify the observed fact. As compared with
most previous schemes, the driver-response relationships can
be directly uncovered using a graphic method in most cases.
On the other hand, in situations involving very weak inter-
action or nearly symmetric coupling in bidirectional interac-
tion, to assess the interaction between the two systems, it is
necessary to calculate and compare the correlation dimen-

FIG. 1. Illustrations of attractors Xn+1�Xn and Yn+1�Yn corresponding to the driver and response system for unidirectional coupling with �2=0.02, 0.06, 0.1,
0.14, and 0.15. In �a�–�c�, the time series sx�t�=x1�t�+x2�t� and sy�t�=y1�t�+y2�t�, while in �d� sx�t�=x1�t� and sy�t�=y1�t�. Additionally, the number of data
points is �a� N=500, �b� N=1000, �c� N=5000, and �d� N=1000, respectively.
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sions of the attractors with respect to the interacting systems.
The following first presents a graphic way, and then intro-
duces the concept of the correlation dimension and applies it
to the problem considered here.

A. Graphic way

Specifically, first consider two coupled chaotic Rössler
oscillators as follows:

ẋ1 = − x2 − x3 + �1�y1 − x1�, ẋ2 = x1 + 0.2x2,

�1�
ẋ3 = 0.2 + x3�x1 − 4.5� ,

ẏ1 = − y2 − y3 + �2�x1 − y1�, ẏ2 = y1 + 0.2y2,

�2�
ẏ3 = 0.2 + y3�y1 − 4.5� ,

where �1 and �2 denote the coupling strengths. Now, two
interaction types are studied.

�i� Unidirectional interaction, without loss of generality,
letting �1=0 and �2�0. Figures 1�a�–1�c� illustrate the at-

tractors Xn+1�Xn and Yn+1�Yn, where Xn and Yn give the
nth local maxima of time series sx�t�=x1�t�+x2�t� and sy�t�
=y1�t�+y2�t�. The coupling strengths �2=0.02, 0.06, 0.1,
0.14, and 0.15 are explicitly labeled in the figure, and the
numbers of data points used are �a� N=500, �b� N=1�103,
and �c� N=5�103, respectively. The figure reveals that, as
the coupling strength �2increases, the attractors for the re-
sponse system expand and are biased away from one dimen-
sion. On the other hand, as �2 increases further, the attractors
of the response system approach the attractor of the driver
system again, as illustrated in Figs. 1�a�–1�c� for �2=0.14
and 0.15. The reason is that, if �2 exceeds some critical value
�c, i.e., �2��c, complete synchronization is achieved be-
tween the considered systems. To illustrate, the global error
e�t�=��i=1

n �yi�t�−xi�t��2 versus time t for �1=0 and �2

=0.155 is plotted in Fig. 2�a�. Notably, the method presented
in this study does not depend on the specific observation
selected. For illustration, in Fig. 1�d�, the corresponding at-
tractors generated from time series x1�t� and y1�t� are pre-
sented, where N=1�103 data points are plotted and the cou-
pling strengths are �2=0.02, 0.06, 0.1, 0.14, and 0.15,
respectively. The driver-response relationships between X
and Y systems are found to be equally clearly distinguished.

�ii� Bidirectional interaction, namely �1�0 and �2�0.
In this situation, the first coupling coefficient is held to be
�1=0.03, and the other one is �2, and is adjusted from 0.01 to
0.13. In Fig. 3, the attractors Xn+1�Xn and Yn+1�Yn corre-
sponding to system �1� and �2� are shown for �1=0.03 and
various values of �2, where N=1�103 data points are used
and the first and third column list Xn+1�Xn, and the second
and fourth column list Yn+1�Yn, respectively. Also, Xn and
Yn denote the nth local maxima for time series sx�t�=x1�t�
+x2�t� and sy�t�=y1�t�+y2�t�. First, for �1=0.03 and
�2=0.01, it can be seen that the attractor for Xn+1�Xn ex-
pands wider than that for Yn+1�Yn. Subsequently, for �1

=�2=0.03, the two attractors all become sparsely contracted
sets owing to couplings. Given �2=0.05, 0.07, and 0.09, it
can be seen that the region of attractors for Yn+1�Yn exceeds

FIG. 2. The global error e�t� �as defined in the text� vs time t for �a� �1

=0, �2=0.155 and �b� �1=0.03, �2=0.13 is presented here.

FIG. 3. Illustrations of the attractors Xn+1�Xn and
Yn+1�Yn corresponding to two bidirectionally coupled
systems governed by Eqs. �1� and �2� for �1=0.03 and
various values of �2, where the first and third columns
list Xn+1�Xn, and the second and fourth columns list
Yn+1�Yn, respectively. Here, N=1000, and sx�t�=x1�t�
+x2�t� and sy�t�=y1�t�+y2�t� are taken.
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that for Xn+1�Xn as illustrated in the figure. For larger val-
ues of �2, complete synchronization between the two coupled
systems is achieved, and the attractors thus approach each
other as shown in the figure for �1=0.03 and �2=0.13. Figure
2�b� presents the global error e�t� versus time t for �1=0.03
and �2=0.13.

Furthermore, we consider the more challenging case in-
volving two coupled structurally different system,1 in which
the driver is an autonomous Rössler system with

ẋ1 = − x2 − x3, ẋ2 = x1 + 0.2x2, ẋ3 = 0.2 + x3�x1 − 4.5� , �3�

which drives a Lorenz system in which the equation for ẏ2 is
augmented via a driving term involving x2,

ẏ1 = 10�− y1 + y2�, ẏ2 = 28y1 − y2 − y1y3 + �x2
2,

�4�
ẏ3 = y1y2 − 8

3 y3.

The unidirectional coupling is introduced in the final term of
the second equation, the constant � being the coupling
strength.

Figure 4 shows the attractors corresponding to driver
Rössler and response Lorenz systems for time series sx�t�
=x1�t�+x2�t� for sy�t�=0.01y1�t�y2�t� with coupling strengths
�=0.0, 0.01, 0.03, 0.07, and 0.1, respectively, where N=1
�103 data points are employed. It is found that as � in-
creases, the attractor corresponding to the response system
clearly becomes biased away from one dimension.

In short, to detect the direction �or asymmetry� of the
coupling between two systems X and Y, it is possible to plot
and compare the corresponding attractors Xn+1�Xn and
Yn+1�Yn, and identify the response system with the expand-
ing one. On the other hand, it is possible to quantitatively
describe the observed phenomena by calculating and com-
paring the correlation dimensions of the attractors. Specifi-
cally, the response system can be identified with the system
with a larger correlation dimension as discussed below.

B. Quantitative description: Correlation
dimension

To accurately describe the observed phenomena, we now
calculate the correlation dimensions of the attractor sets as
illustrated in Sec. II A for interacting systems. The concept
of the correlation dimension was introduced by Grassberger
and Procaccia,10 and has been widely used to characterize
chaotic attractors. To define the correlation dimension for an
attractor including N points, �x1 ,x2 , . . . ,xN�, it is necessary
to ask for the number of points lying within distance � of
each point i, excluding point i itself. Next, the relative num-
ber is formally written as

ni��� =
1

N − 1 �
j=1,j�i

N

��� − �xi − x j�� , �5�

where ��x� denotes the Heaviside step function satisfying
��x�=0 if x�0, and ��x�=1 if x�0. Then, we compute the
so-called correlation sum C���,

C��� =
1

N
�
i=1

N

ni��� =
1

N�N − 1� �
j=1,j�i

N

��� − �xi − x j�� . �6�

Often the limit N→� is also added to assume that we char-
acterize the entire attractor.11 Finally, the correlation dimen-
sion D is defined as the number

D = lim
�→0

log C���
log �

. �7�

Since any real data set consists of a finite number of
points, there is some minimum distance between points.
When � is less than that minimum distance, the correlation
sum C��� equals zero and so too does the correlation dimen-
sion. Therefore, what is done in practice is to compute C���
for some range of � values and then plot log C��� as a func-
tion of log � as illustrated in Fig. 5�a�. This study finds that,
to obtain a reliable result for the correlation dimension, the
number of data points should be no less than N=1�103, and
N=3�103 is used in this study. Based on the observed phe-
nomena described above, it is reasonable to consider that a
higher correlation dimension with respect to the attractor
Xn+1�Xn or Yn+1�Yn corresponds to the response system
�or that driven by stronger coupling strength in bidirectional
interaction cases�. Consequently, the following computes and
compares the correlation dimensions of attractors Xn+1�Xn

and Yn+1�Yn to distinguish a driver from a response system.
First, reconsider two interacting Rössler oscillators gov-

erned by Eqs. �1� and �2�. To calculate the correlation dimen-
sion D, N=3�103 data points xi= �Xi+1 ,Xi� �or �Yi+1, Yi�� for
i=1,2 , . . . ,N−1 and �� �10−3.5 ,10−1.75� are taken, respec-
tively, in the following simulations: Xi �or Yi� is the ith maxi-
mum of the observed time series. Additionally, all the results
given below are obtained by averaging over 100 different
trajectories. For example, log C��� versus log � for attractor
Yn+1�Yn with �1=0.03 and �2=0.08 is plotted in Fig. 5�a�.
The slope of the fitting line shown here, i.e.,Dy, is 1.794, and
has standard deviation 0.008. As mentioned previously, this
study holds the first coupling coefficient to be �1=0.03, and
adjusts another coefficient �2 from 0.01 to 0.12. Figure 5�b�

FIG. 4. Illustrations of the attractors Xn+1�Xn and Yn+1�Yn corresponding
to two structurally different systems governed by Eqs. �3� and �4�. Here,
N=1000, sx�t�=x1�t�+x2�t�, sy�t�=0.01y1�t�y2�t�, and the coupling strengths
�=0.0, 0.01, 0.03, 0.07, and 0.1 are taken.
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plots �Dy −Dx���2 with standard deviations. It can be seen
that 	D��2�=Dy��2�−Dx��2� can accurately quantify the
coupling asymmetry.

Next, similar results can be obtained for structurally dif-
ferent systems. For example, consider once again two
coupled systems governed by Eqs. �3� and �4�, where the
Lorenz system is driven by the Rössler oscillator. This study
plots 	D= �DL−DR��� with coupling strength � ranging
from 0 to 0.095 in Fig. 6, where DL and DR are the correla-
tion dimensions12 of the attractors Xn+1�Xn and Yn+1�Yn

corresponding to the Lorenz and Rössler systems, respec-
tively. 	D��� is found to increase with � indicating the
causal relationship between the two interacting systems very
well.

A related issue concerns the so-called passive
experiments8,13 in which the coupling strength between two
systems cannot be varied systematically. As noted by
Romano et al.,8 this is the case in numerous situations. Thiel
et al.13 proposed a twin surrogates test to resolve this prob-
lem. Regarding the method developed in this study, it is
found that, when ��2−�1� is very small �including the unidi-
rectional and bidirectional cases discussed above�, �	D� is
nearly zero. Therefore, to assess the statistical significance of
the results, it is necessary to generate surrogates.

III. CONCLUSIONS

In sum, this study proposes an approach for identifying
the direction of coupling between two interacting systems.
The proposed approach can be applied to both unidirectional
coupling and bidirectional coupling, and for weak and strong
couplings. Furthermore, the proposed approach can detect
not only driver-response relationships between identical sys-
tems, but also structurally different systems. Particularly, ac-
cording to the proposed scheme, in most cases it is even
possible to distinguish a driver from a response system
graphically.
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FIG. 5. �Color online� �a� log C���� log � for attractor Yn+1�Yn with �1

=0.03 and �2=0.08. The slope of the fitting line shown here, i.e., Dy, is
1.794, and has standard deviation 0.008. Here, N=3000, and �
� �10−3.5 ,10−1.75� are taken. �b� Plots of �Dy −Dx���2 with standard devia-
tions, where �1=0.03 is fixed in the simulations. Furthermore, 	D=Dy

−Dx quantify the asymmetry in coupling of two bidirectionally coupled
systems. The zero line is also plotted to facilitate orientation �dot-dashed
line�.

FIG. 6. Plots of �DL−DR��� with standard deviations and the coupling
strength � range from 0 to 0.095, where DL and DR are correlation dimen-
sions of the attractors Xn+1�Xn and Yn+1�Yn corresponding to the Lorenz
and Rössler systems, respectively. The zero line is also plotted for orienta-
tion �dot-dashed line�.
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