
CHINESE JOURNAL OF PHYSICS VOL. 37, NO. 5 OCTOBER 1999

Determinism Test, Noise Estimate and Hidden Eírequency Recognition:
the Singular Value Decomposition Approach

Jing-Yuan Ko, Jiann-Shing Lih, Ming-Chung Ho,

Charng-Ching Tsai, and Jyh-Long Chern
Nonlinear Science Group, Department of Physics, National Cheng Kung University,

Tainan, Taiwan  701, R.O.C.

(Received January 6, 1999)

Given a scalar time series, the trajectory matrix of a system can be constructed by
the Takensí delay-coordinate map theorem. We employ the method of singular value
decomposition (SVD) to derive the eigenvalue spectrum of the trajectory matrix. It is
shown that when the embedding dimension of the trajectory matrix is very large, the
SVD eigenvalue spectrum could be utilized to test the determinism and estimate the
strength of noise in time series. On the other hand, we show that the dynamically con-
nected frequency components hidden in chaotic time series can be detected by the SVD
method. Finally, three kinds of circuit experiments are presented as demonstrations.

PACS. 05.45.+b  - Theory and the models of chaotic systems.

I. Introduction

Progress in nonlinear dynamics has stimulated general interest on complex phenom-
ena. The study of chaos becomes a paradigm in nonlinear studies. The fundamental nature
of chaos is determinism. But, how does one go about recognizing the determinism in a
complex time series ? In 1990, Sugihara and May considered the prediction ability inherent
in chaos for measuring the deterministic dynamics in a time series [l]. On the other hand,
Kaplan and Glass measured the average directional vectors in the coarse-grained  dimen-
sional space for testing [2]. Later, Wayland  et al. simplified the approach of Kaplan and
Glass by employing the inherent property of a deterministic time series in phase space, i.e.,
the continuity of trajectory [3].  Both works of Kaplan-Glass and Wayland  et ~2. suggested
that the continuity in an embedded phase space is enough for extracting the determinism
in a time series. Furthermore, Salvino and Cawley indicated that continuity still holds even
for many arbitrary vector fields over an attractor and a unique feature associated with an
optimum average over a wide range of time delay could be employed as a novel test for
determinism [4]. Thus far, it is well accepted that phase space continuity can be used as a
test of determinism for continuous-time dynamical systems. Unfortunately, there remains
a practical task in such a determinism test, i.e., the criterion of the ball size in averaging is
not available in general.
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Let us turn to consider another important subject in the study of chaos, i.e., the
applicability of chaos. Usually, power spectrum analysis is the first tool to gain dynami-
cal information [5].  In many real situations, only one physical variable can be observed.
However, the intrinsic nature of dynamical systems could be multivariate. Hence, in such
situations it is of practical importance to develop a technique that provides access to the
whole spectrum of frequency components inherent in a dynamical system. Recently, Ortega
introduced a procedure in response to the above challenge [6]. The essence of Ortegaís idea
is to embed the data in multidimensional space with some unit cell balls and record the
density of the points that the trajectory met with the cell as it evolves. By taking a power
spectrum analysis on this density flow, more dynamically connected frequency components
in a continuous time dynamical system can be extracted. Again, for this method it is es-
sential to have an ìappropriateî ball size in phase space for determining the density flow.
This leads to a serious problem of flexibility and efficiency in applications, which is exactly
the same problem as that for the case of determinism test mentioned above.

The SVD method has been useful in extracting qualitative dynamics from experiment
data as shown by Broomhead and King [7].  Typical example is to calculate the correlation
dimension of an attractor [8].  On the other hand, Brown et al. [9] and Stoop and Parisi
[lo] also advocated its advantage to restrict the dynamics to the tangent plane of the at-
tractor prior to approximating the local dynamics. In the field of noise reduction, the SVD
method has also been employed to enhance the accuracy of local linear dynamics [ll, 121.
In this paper, we will present the advantages of the SVD approach in testing determinism,
estimating the noise strength, and recognizing the hidden frequency components in a time
series. It should be noted that the support to our previous work [13]  on determinism test is
numerical simulations only. Thus, some important factors of the underlying working princi-
ple and limitation remain to clarify. In Sec. II we will briefly outline the general formalism
of the SVD method presenting new geometric and algebraic interpretations such that the
essential mechanism can be greatly illustrated. In Sec. III, we will show how to obtain the
eigenvalue spectrum to test the determinism of a variety of time series. In Sec. IV, we will
demonstrate how to estimate the noise level of a time series mixed with a uniform noise.
A simple formula to deduce noise strength from time series will be attached. Furthermore,
the silent features of the SVD approach associated with the length of time series, time
delay, and embedding dimension, will be further appended as a complete illustration. In
Sec. V, the SVD method will be used in tandem with phase space reconstruction to detect
the dynamically connected frequency components hidden in a chaotic time series [14]. In
Sec. VI we will present the circuit experiments as an exploration of estimating the noise
level. Finally, in Sec. VII, concluding comments will be offered.

II. The SVD method: general formalism and its interpretation

II- 1. General formalism
We assume that the dynamical system is described by a set of differential equations

e = F(X) where X = (zr,  z2, x3,. . .) represents the state vector. If physically one variable
vît  say v = z1 is measured, then we can have a time series {v(At), 42At),  ~(3At),  . . .,
v((N+d)At)}  hw ere At is the time difference between two successive measurements, (NfaT)
is the total number of data points, and d is the embedding dimension. Based on the Takens’
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delay-coordinate map theorem [15],  we can reconstruct a d-dimensional vector yi and define
an N x a! trajectory matrix

A =

427)  * 4dT)
437)  * ad + w. . *v(C) v((N  +  1)~)  .  v((N +  d  - 1)~) I

(1)

which contains all dynamical information. In above reconstruction, we have presumed the
embedding dimension of an attracting manifold within the phase space to be d.

By using the SVD method, the matrix A can be decomposed as A = VSUT where
V is an N x d orthogonal matrix, U is an d x d orthogonal matrix, and S is an d x d
diagonal matrix. Meanwhile, (VíV)Ii,j  = 6ij, (UíU)Ii,j  = (UUí)Ii,j  = 6ij and Sij = Sijs(;)
(i = 1,2,. . .). The matrix S is the singular value matrix of A and s(i) is its corresponding
singular value. Since UT(ATA)U = S2 and (ATA)U  = S2U, [s(i)12  are the eigenvalues
of (AT A) and correspondingly, U is the set of eigenvectors. We rearrange the normalized
[s(i)12  in a descending order and name it as the SVD spectrum. The distribution of the
eigenvalues (the SVD spectrum) could be utilized for testing determinism and estimating
noise strength, as to be fully addressed below. Because U is an orthogonal matrix, its
eigenvectors Ui(i = 1,2,. . . , d) can be the orthogonal basis of the reconstructed phase
space. The projected variables are Ci(lc) = AUiy  where k = 1,2,.  . ., iV indicates time flow.
Although Ui are not the eigenvectors of the matrix A, the flexibility and suitability of
projected variables ci can be established. The time flow of these reconstructed variables
ci and their spectrum characteristics could be utilized in recognizing the hidden frequency
components in a chaotic time series, as also to be illustrated systematically below.

It should be noted that the use of the SVD projection method has been classified
into two kinds of scheme [lo],  i.e., ìglobalî and ìlocalî, according to whether the principal
direction of the reconstructed attractor is ìglobalî or ìlocalî. Here, the SVD approach is
essentially a global one. It should be also noted that in our numerical simulation, we take
a fourth-order Runge-Kutta algorithm to integrate the equations with a time step 7. In
detecting the hidden frequencies, a small At is necessary. For simplicity, we will also let
At = r and employ a common FFT algorithm to estimate the power spectrum.

11-2. Geometrical picture
Let us first provide an intuitive illustration for the (global) SVD scheme. The SVD

method is to explicitly construct the orthonormal bases of the m&pace  and the range of
a singular matrix. Specifically, the columns of V form an orthonormal set of basis vectors
that spans the range. The number of these basis vectors is the same as the number of
nonzero elements of si+ Meanwhile, the columns of U form an orthonormal set of basis
vectors that span the mrllsapce.  The number of these basis vectors is equal to the number
of zero elements of si plus the number of free parameters of a singular matrix. In other
words, when we applied the SVD algorithm to a trajectory matrix, which is a singular
matrix, the number of nonzero elements of si is the degree of freedom for describing the
dynamical system, which is defined by the trajectory matrix.

A simple interpretation of the SVD algorithm can be geometrically illustrated as
shown below. Assume that the final state of a system is a fixed point, say (1.0, 2.0) in
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a two-dimension phase space. For a simple illustration, only three successive states are

considered, thus the trajectory matrix is By using the SVD method, we

solve the matrix and obtain the

L J

diagonal matrix S = , where the number of

nonzero  diagonal elements is 1. This is consistent with the degree if freedom required for
embedding the fixed point. It can be shown that an extension to the case of n-dimensional
phase space simply results in one nonzero diagonal element.

11-3.  Algebraic interpretation
Let us now treat the SVD method with an algebraic point of view. By definition, the

SVD method is essentially to solve the eigenvalue problem (ATA)U = S2U, where

v(ir)v(i+) v(iT)v((i  + 1)~) ë.  . v(ir)v((i  + d - 1)~)
i=l i=l i=l

N N N

c
v((i + l)T)u(iT)

c
v((i  + l)T)v((i+  1)r) I..

A=A= c
v((i  + l)r)v((i  + d - 1)~)

i=l i=l i=l (2)

N N N

xv((i+d-l)r)u(ir)  xv((i+d-l)T)v((i+l)r)  ... xv((i+d-l)r)v((i+d-1)~)

i=l i=l i=l

The matrix A*A  is a symmetric real matrix and its elements are the time-delay correlation
of the time series {v(t)}. T hus, we should consider a variety of correlation forms satisfied
a D x D symmetric real matrix, i.e.,

r f(O) f(l) *a. f(D-1) 1
f(l)

ATA= .
f(O) ... f(D-2)

1 fP- 1) fP-2) -.. f(O) J
where f is the correlation function. Let us suppose the elements fit an exponential decay
form, f (25) = e-bz, which may simulate a chaotic time series. Next, we solve the eigenvalues
of the matrix AT A numerically and rearrange the eigenvalues with a descent order, i.e.,
A, (n = 1,2,. . . ,D) and Xi > AZ > . - * > AD. It is found that the eigenvalues follow

x db) -a(b)n,z-e
D ’

where o(b)  z 9.7eMb. This is essentially an exponential decay. On the other hand, for a
uniform white noise, its time-delay satisfies correlation f(z) = S(z), and the eigenvalues of
A*A  are all equal to 1. Thus, the eigenvalue spectrum for a uniform noise does not decline
but to maintain a constant level.
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III .  Determinism test

III- l .  Deterministic  signals
in this section, we show how to utilize the SVD method for testing determinism.

Specifically,  the reconstructed vectors are used to form a trajectory matrix. By using the
SVD method, a set of orthogonal vectors can be derived from the trajectory matrix and
the eigenvalues  will form the SVD spectrum. We also employ the Takens’  delay-coordinate
map theorem for reconstructing phase space, but the embedding dimension has been set to
be very large.

For a trajectory matrix which represents a high-dimensional object, a large part of the
eigenvalues  will not vanish. This idea suggests that for an uncorrelated stochastic source
whose dimension is intrinsically infinite, its eigenvalues will never become zero regardless
the size of embedding dimension. Hence, the SVD eigenvalue spectrum for a white noise
should be flat and not zero. Figure l(a) and (b) hs ow the SVD spectra of a uniform white
noise and a Guassian white noise. Both spectra are flat and they are almost identical. This
is reasonable because these two stochastic sources exhibit the same homogeneity character
in all directions of phase space. On the other hand, for a periodic signal, sin(t), and a
qusiperiodic signal, sin(t) t sin(@), whose SVD spectra are presented by Fig. l(c) and

_ (d), the corresponding eigenvalues drop rapidly as the index of dimension increased. The
appearance of sudden drop is a typical feature for the regular signals with sharp spectra and
it can be expected based on the geometric consideration outlined above. For the chaotic
signal, the characteristics should be different as discussed in Sec. II(C). We take the Lorenz
model which follows 2 = a(y - z), 2 = ?-2 - y - 22, $ = xy - bz, where u = 10.0 ,
T = 28.0 and b = 2.66, as an illustration. The step size is 0.005 and the data length
is 5100.  We take the variable x as the variable for reconstruction. As one can see from
Fig. l(e), the eigenvalues displays an exponential decay. The decay rate can be estimated
using [s(Z)12 c( exp[-yl],  and y = 1.50 for the Lorenz model. This exponential decay is a
general signature of chaos in the SVD spectrum, though the value of decay rate depends
the size of the embedding dimension and the model itself. Indeed, the other typical models,
such as the Rossler chaos, FIR-NH3  model, and so on, have been explored and exactly the
same features have been numerically demonstrated [13].

Although an algebraic interpretation is given in Sec. II(C), the origin of this non-
sudden drop characteristic in SVD eigenvalue spectrum for the chaotic attractor can be
figured out differently. Substantially, the SVD algorithm seeks for a complete set of orthog-
onal base vectors whose total number is strictly an integer. However, chaotic attractors
are all of non-integer dimension. Thus, the resulting fractional value of dimension of the
attractor should distribute over to the rest of SVD dimension index.

111-2. Surrogate tests
It is important to perform the surrogate test to ensure the determinism nature identi-

fied and explored by the SVD method. To check the deterministic nature further, we follow
the prescription of Pierson and Moss [16] to destroy the sequential order to form a surrogate
set and reanalyze the SVD spectrum. We also follow Ref. [17]  and use the unwindowed
Fourier transform algorithm to generate the surrogate data. As shown in Fig. 2, where the
Lorenz model is used as a typical example, the SVD spectra of the surrogate data are
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FIG. 1. The SVD eigenvalue spectra of seven
different signals, (a) uniform white
noise, (b) Gaussian white noise, (c) a
periodic signal, sin(t), (d) a quasiperi-
odic signal, sin(t) + sin(G),  (e) the
Lorenz model.

index of dimension

FIG. 2. The SVD eigenvalue spectra of a time
series from the Lorenz model and its
surrogate data. (a) is the original
time series, (b) is generated by ran-
domizing the sequential order of the
original time series, and (c) is ob-
tained by the unwindowed Fourier
transformation algorithm.

completely different from the original one. In short, deterministic nature can be extracted
based on the SVD eigenvalue spectrum.

111-J. Stochastic signals
We demonstrate the analysis with the models driven by dynamical noise as following.

First, we take the equation g = sint + oq(t), where cy is the noise strength and n(t)  is the
Gaussian white noise. In Fig. 3(a) the corresponding SVD spectrum shows a sudden drop
when cr = lo- lo. As a large o = lo-ë, the slow-inclination of the SVD spectrum is lifted.
Next, we take the noisy Dufhng  oscillator, $$ ït  u$ - 2 + Z’ = f sinwt t on(t) where
a = 0.25, f = 0.4, 20 = 1.0 as an example. The result is shown by Fig. 3(b). One can see
the exponential-decay feature persist. To show the generality, we present another case, a
modified Lorenz model for which the change of y component follows g = TZ - y- zz + oq(t).
The result is shown in Fig. 3(c) where similar feature can be identified. In addition, the
lifted slow-inclination is another general feature of the SVD spectrum for the increasing
strength of noise.

IV. Noise estimate

IV-l. Simple test
The appearance of slow-inclination is a general feature of the SVD eigenvalue spec-

trum. In other words, at the end of the exponential drop of the SVD spectrum, a tnrning
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FIG. 3. The SVD eigenvalue spectra for different stochastic models. In these cases, the small noise
strength is (Y = 10-lí,  and the large noise strength is cy = 10-l.  (a) A periodic solution

Index of dimension

with noise, (b) the noisy chaotic Duffing oscillator, and (c) the noisy chaotic Lorenz model.

point occurs at the dimension index I = 1,. As an example, see the Lorenz model shown
in Fig. 1. After this point a flat floor takes place around 1O-35  which is most likely due
to the intrinsic numerical noise. This slow-inclination forms another essential part of the
SVD eigenvalue spectrum. To explore the underlying feature caused by the noise, we add a
Gaussian white noise whose standard deviation is 0 to the CC variable of the Lorenz model.
We define the ratio between the noise strength and the time series as R.

R =
2a

,
5max - 2rnin

where CC,,, and r,in are the maximum and the minimum value of the data z respectively.
As shown in Fig. 4, for R < 1, the decay rate does not change while the slow-inclination
of the spectrum shift up/down proportionally. Owing to the slope of this slow-inclination
is -0.014 f 0.001, we define the interception f as the noise level of the slow-inclination. In
Fig. 5, different values of R hold a relation

f= cR6 (6)
for a large range R from 10-l’ to 10-l where f is the corresponding noise level, c is about
0.02 and S is about 1.98. Nevertheless, the deviation occurs for R N 1.0 (as shown in the
figure inset).
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The SVD eigenvalue spectra for the
Lorenz model with different levels of
added uniform noise where the noise
contamination factor R = (a) 1.0, (b)
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FIG. 5. The noise level f versus the observa-
tional Gaussian noise ratio R. T h e
line is f = 0.02 R1.ì.  The inset is
the magnified of portion of the noise
level for R - 1.

IV-2. Estimate formulate
We have tested the generality. It is found that the exponent 6 is equal to 2.00 & 0.02

for a variety of signals, such as the Lorenz chaos, the Rossler chaos, the FIR-NH3  laser
model and even sine signal. For the Lorenz model, c = 1.07 x 10m2  while for the FIR-NH3
laser model, c = 1.64 x 10e2  and for the Rossler chaos, c = 0.80 x 10e2  [13]. Thus, for
a chaotic time series, one can estimate the noise level f. This means that by using the
relation

f = cR2 ++ 0.01 R2, (7)

one can deduce the value of R which roughly represents the strength of the noise contained
in real time series. We note that the R-value only indicate a relative ratio of noise strength.
To estimate absolute noise strength IN, the intensity of a measured time series, It, should
be evaluated first. Then we have

IN+&. (8)

According to the results shown above, one can approximately estimate the noise level for
any time series. We note that the constant c z 0.01 can be employed without the loss of
too much generality. Therefore, Eq. (7) turns out to be a useful estimate.

IV-3. Influences of data length, time delay, and embedding dimension
Next, we use the Lorenz model to explore the silent features of the SVD analysis.

namely the length of time series, time delay, and embedding dimension. Different models.
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such  as the DufFing  oscillator and the Van der Pol oscillator, have also been tested. To
explore the factor of data length, we vary it as equal to 1000, 2000, 3000, 4000 and 5000
sequentially, The corresponding SVD spectra of these data sets are shown in Fig. 6. One
can see that the SVD spectra of different data lengths are almost the same. We note that the
computation time of the matrix operation is mainly decided by the size of matrix. To save
computation time, we can choose a shorter data length to implement the SVD algorithm
and the result is reliable. As to the influence of time delay, we show the results of five
different time delays: 0.005, 0.010, 0.015, 0.020, and 0.025 in Fig. 7. Obviously, the feature
of exponential decay would be destroyed when the delay is too large. A too long time delay
causes the reconstructed trajectory discontinuously and results in a failure. Consequently,
the time series used in the SVD analysis must be sampled finely enough. On the other hand,
the value of embedding dimensions we used to construct the trajectory matrix is always
chosen largely enough to fully expand the SVD spectrum such that both the fast-inclination
and the slow-inclination can be included. For a small embedding dimension, as shown in
Fig. 8, the SVD spectrum may not be able to reach to the slow-inclination. Thus, when the
embedding dimension is small the information of noise level cannot be revealed. We note
that although the decay rate is dependent on its own embedding dimension, the feature
of exponential decay is always preserved and the noise level is invariant with respect to

- different dimensions.
In short, if we have chosen appropriate time delay and embedding dimension, the

whole SVD spectrum can be obtained from the reconstructed trajectory of a system. The
SVD eigenvalue spectrum method works well on detecting the determinism of a complex
time series, and there is no ambiguity in determining the ìappropriateî ball size in phase
space at all.
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The SVD eigenvalue spectra for the
Lorenz model with different data
lengrth 1000, 2000, 3000, 4000, and
5000.

FIG. 7. The SVD eigenvalue spectra for the
Lorenz model with different delay
time (a) 0.005, (b) 0.010, (c) 0.015,
(d) 0.020, and (e) 0.025.
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FIG. 8. The SVD eigenvalue spectra for the Lorenz model with different embedding dimension
D.

V. Hidden frequency recognition

In this section, we address another applicability of chaos in line with the SVD ap-
proach, namely, recognizing the dynamically connected frequency components hidden in
the time series. The essential idea has been outlined in the introduction. We will show two
methods for the task.

V-l. SVD projection
Let us take the well-known Lorenz model as a numerical illustration. The dynamical

equations follow % = a(y - Xc), f = T2 - y - 22, $ = zy - bt, where 0 = 10.0, T = 29.0
and b = 2.66. In Fig. 9, the power spectra of the variables 2, y and z are presented. One
can see that for the variable z a narrow band peaked at the frequency -zl, labeled by a down
arrow 1, is totally hidden in the power spectrum of the z component. Meanwhile, although
the spectra between z and y are similar, there are some frequency components, such as
yl, yZ and y3 appeared in the spectrum of y but not in that of the 2. This difference is a
reflection of the dynamically broken symmetry occurred to the steady state z = y in the
Lorenz model. If one only measures the variable Z, the frequency zl, which is important
for z, may be missed. Similar consequences also can be made for the frequency components

yl, yz ad ~3 for Y.
As a demonstration of hidden frequency recognition, we choose z as the variable in

reconstructing the trajectory matrix. For comparison, we choose the embedding dimension
to be exactly three. Typically, the data are taken after transient and the number of data
is 40000 with r = 0.005. This choice ensures the demonstration such that we have a larger
Nyquist critical frequency and a smaller frequency interval in the power spectrum. Fig. 10
shows the time series of Z, y, and z and the projected variables cl, c2, and c3. Practically,
we may neglect c3 since it is extremely small. The corresponding power spectra of two
reconstructed projected variables cl, and c2 are shown in (a) and (b) of Fig. 11. This is the
result when we use the variable z for the reconstruction. The use of the other variables
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FIG. 9. Power spectra of the Lorenz model for
the three variables, (a) 2, (b) y, and
(c) i, where the parameters d = 10.0,
r = 29.0 and b = 2.66.
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FIG. 10. Time series of the Lorenz model for
the variable (a) 2, (b) y, and (c) Z.
The SVD projected variables cl, cg,
and cs are shown in (d), (e) and (f) re-
spectively. The parameter values are
the same as those of Fig. 9.

in reconstruction will result in the same fashion. We note that the projected variable ci
(here i = 1: 2,3) have been defined in the decreasing order by their SVD eigenvalues. It is
important to note that the power spectrum of the first projected variable, cl, is essentially
the same as that of the variable chosen in reconstruction.

Next we turn the attention to the spectrum of second projected variable, c2. The
hidden frequency zlr can be traced out as marked by the down arrow 1 shown in Fig. 11(b).
One can see that the spectra of z and c2 are different, though the main frequency peaks
are similar. Since c2 is a projection variable of the trajectory matrix reconstructed from
5, its spectrum components originate essentially from z and, implicitly, also from y and z.
Indeed, the hidden frequency components yl, y2 and y3 could be found in the spectrum of
c2. Let us label the principal frequency component of cz by the down arrow 4. It can be
found that this frequency component also appears in the spectra of z and y (see Fig. 9).
After carefully identifying every spectrum component, we have found that the spectrum of
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FIG. 11. Power spectra of the SVD projected variable (a) cl, (b) cg and the quantity L, for the
Lorenz  model. (see text).

cg contains the principai  components of two spectra of y and z. This shows how well the
SVD projection works.

V-2. Resealed derivative
Although the spectrum of second projected variable c2 contains the principal compo-

nents of two spectra of y and z as shown above, there also appears a lot of other frequencies
with similar powers. Therefore, we suggest to use another approach as an improvement.
Since the main concern is the frequency component, we try to rescale  every ci(lc) within
the interval [0, l] and renamed them as ri(lc).  The oscillation character of ci(lc)  is ex-
pected to OCCUT  to Ti(k) with different spectral weighting. Next, we calculate a quantity

L(k) = 5 ]~;(Ic  t 1) - +)I. This quantity is effectively a distance quantity for the time
i=l

derivative, 2 z ri(b + 1) - ri(k).  A oscillation character of r;(k) is also expected to occur
to the time derivative, ri(lc + 1) - ri(k).  The Lorenz  model is reanalyzed. The result is
shown in Fig. 10(c).  We emphasize that we use the variable z for reconstruction and then
after the SVD projection, every ci is resealed.  One can see that the power spectrum of L(k)
corresponds to z very well. The extension to other models, such as the Rossler model and
the hyperchaotic Rossler model, have been verify [14].

Let us make a brief summary, we give up choosing the ìappropriateî ball size in the
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phase space. In contrast, we introduce the SVD algorithm to identify the hidden frequencies.
The results shown above indicate that the SVD method can work well on recognizing the
frequencies hidden in a scalar time series. We have demonstrated two different schemes
in cat thing hidden frequency components. In practice, one can utilize these two schemes
together to pick up several main hidden frequency components.

VI. Experimental exploration

It is important to have real experiments as a demonstration. Here we present the
diode resonator systems with three different kinds of noises, namely, (1) the observational
noise, (2) the additive dynamical noise, and (3) the multiplicative dynamical noise, to show
the interplay between the nonlinear deterministic structure and a variety of noises, paying
special attention on determinism test.

VI- 1. Observational noise
The diode resonator system with an observational noise configuration is shown in

Fig. 12(a), which is a series circuit with a diode (lN5402),  an inductor (1.0 H) and a
resistor (6.8 KQ) modulated by a sinusoidal signal. This diode resonator has been used
for the demonstration of various chaotic phenomena [lS].  Here we use two HP33120A
function generators to generate the sinusoidal modulation and the Gaussian noise. The
standard deviation of the noise source is A~/10, where AN is the noise amplitude from
the generator. The output voltage Vout  w 1.0 Vpp is the difference voltage across the
resistor added with the Gaussian noise with the help of an operation amplifier LF353.
Clearly, this configuration typically simulates the case of observation noise. Without the
loss of generality, the amplitude and the frequency of sinusoidal modulation are fixed at 5.0
Vpp (Vpp: peak-to-peak voltage) and 15.0 KHz, respectively, at which without the noise
configuration the system is chaotic. [19]

The output data VoUt are analyzed by using the SVD spectrum. The sampling rate
used for data acquisition is 500 KHz. We usually take the data length 2000. With such
a modulation voltage, A N is constrained to below 9 Vpp due to the power limitation of
operation amplifier. We choose seven values of noise amplitude: 0.1 Vpp, 0.5 Vpp, 1.0 Vpp,
2.0 Vpp, 3.0 Vpp, 4.0 Vpp, and 5.0 Vpp. In other words, the standard deviations of the
noise source 0 are 0.01 Vpp, 0.05 Vpp, 0.1 Vpp, 0.2 Vpp, 0.3 Vpp, 0.4 Vpp, and 0.5 Vpp
and the ratio Rs are 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The results of the SVD analysis
are shown in Fig. 12(b). As expected, the SVD spectrum displays an exponential decay
and a slow inclination. One can see that there appears kink structure indicated by arrow.
These kinks reflect the intrinsic dynamical nature of the diode resonator.

VI-Z. Additive dynamical noise
For the case of additive dynamical noise, another circuit is constructed. The system-

atic diagram is shown in Fig. 13(a). We use the operational amplifier, LF353, to sum the
sinusoidal signal and the Gaussian noise. This summation is further used to drive the diode
resonator. Thus, the noise is playing a role of dynamical noise. Again, the amplitude of
the driving sinusoidal is 5.0 Vpp and the frequency is 15.0 KHz. The conditions of data
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FIG. 12. (a) The diode circuit with a obser-
vational noise added to the voltage
output of the resister. (b) The SVD
eignevalue spectra. The amplitude of
observational noises are (1) 0.1 Vpp,
(2) 6.5 VPP,  (3) I.6 VPP, (4) 2.6 VPP,
(5) 3.0 Vpp (6) 4.0 Vpp, and (7) 5.0
Vpp. The amplitude and frequency
of driving sine signal are 5.0 Vpp and
15 KHz respectively. The time series
is sampled at 500 KHz by measuring
the voltage amplitude of the resister.
Data length is 2000.

(l)
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FIG. 13. (a) The diode resonator driven by the
sum of a sine and stochastic signal.
(b) The SVD eignevalue spectra. The
amplitude of simple dynamical noises
are (1) 0.1 Vpp, (2) 0.5 Vpp, (3) 1.0
VPP,  (4) 2.6 VPP,  (5) 3.0 VPP (6) 4.0
Vpp, and (7) 5.0 Vpp.

acquisition are the same as that mentioned above. The experimental data is obtained by
measuring the voltage amplitude across the resistor. We had also chosen seven amplitudes
of noise to perform the analysis, namely, 0.1 Vpp, 0.5 Vpp, 1.0 Vpp, 2.0 Vpp, 3.0 Vpp,
4.0 Vpp, and 5.0 Vpp. As one can see in Fig. 13(b), the feature of the SVD spectrum, the
exponential decay and the noise level, remains. Meanwhile, the kinks still occur.

VI-3.  Multiplicative dynamical  noise
Let us turn to consider another case, Fig. 14(a) shows the experimental setup of

a diode resonator system with multiplicative dynamical noise. Through a multiplier IC,
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AD632, the generated noise is multiplied by the output Vout  to produce multiplicative
dynamical noise. The multiplicative dynamical noise is further added with the sinusoidal
modulation by LF353, and then used to drive the circuit. This forms a feedback loop
actually.  With such a modulation voltage, AN is constrained to below 9 Vpp due to the
voltage limitation of the operation amplifier/multiplier. The amplitude and the frequency
of sinusoidal modulation, the sampling rate and the data length used for data acquisition
are all the same as those mentioned above.

Referring to Fig. 12(b) and Fig. 13(b), the stochastic responses of the case of multi-
plicative dynamical noise are different, as comparing with Fig. 14(b). Although there also
appears exponential decay with some kink structures, indicated with the down arrows 1,
the decay rates are no longer to be the same when different noise strength is varied. As the
noise amplitude goes up, the decay rate drops more rapidly.

In Fig. 15, for the observational noise case, the result of the smaller noise ratio consists
with Eq. (7). As the noise ratio increases to 1, the deviation appears as mentioned in

i i

0 20 40 60 80 100
Index of dimension

FIG. 14. (a) The diode resonator driven by the FIG. 15. The noise ratio R versus the noise
sum of sine wave and the variable- level f. The Square points are the
dependent noise. (b) The S V D experimental data for observational
eignevalue spectra. The amplitude of noise. The triangle points are the
multiplicative variable noises are (I) experimental data for additive noise.
0.1 VPP,  ( 2 )  0.5 VPP,  ( 3 )  1.0 VPP, The circle points are the experimen-
(4) 2.0 VPP,  (5) 3.0 VPP,  (6) 4.0 VP P, tal data for multiplicative noise. The
and (7) 5.0 Vpp. line is f = 0.03 R2.
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Sec. IV(B). However, for the additive dynamical noise and the multiplicative noise, we note
that as noise amplitude  increases, the noise ratio and the noise level could not follow Eq. (7).
In short, testing determinism based on the SVD scheme can be operated very well in the
observational noise situation of real experiment but does not for the others.

VII. Conclusions

We have shown that the exponential decay of the SVD spectrum is due to the intrinsic
correlation of the chaotic time series. It has also been studied that the data length, the time
delay, and the embedding dimension influence in the SVD spectrum method. A variety of
time series originated from different generation processes has been employed to show the
validity of the SVD analysis. Furthermore, three different kinds of circuit systems have
been utilized to explore the SVD analysis in testing determinism. Although the kinds of
noise are different, the SVD spectra still have the exponential decay and the noise level. It
is worthwhile to note that the SVD method gets rid of the conception of an ìappropriate”
ball size in phase space. Hence, there is no ambiguity in judging which ball size could be
appropriate.

The criterion based on the SVD spectrum can be a flexible method, which is good
for testing the determinism, estimating the noise strength, and recognizing the hidden
frequency components in a time series, which we presumed that it is generated from a
continuous-time dynamical system. Unfortunately, the SVD analysis presented here could
not be extended to the discrete dynamical system. This is also true for the discrete data
reduced from the Poincare section. This defect urges the development of a similar analysis
for the discrete data. This is a nontrivial task and work to this goal is on the progress.
Although the noise estimate works very well for small noise strength, there remains in-
consistency in the case of strong noise. Thus, how to derive a suitable estimate is still a
difficult problem with current interest. On the other hand, though we have derived two
working criteria to deduce the hidden frequency components effectively, there remain no
general applicable rules to deal this inverse problem.
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