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Chaotic behavior in the disorder cellular automata
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Abstract

Disordered cellular automata (DCA) represent an intermediate class between elementary cellular automata and the
Kauffman network. Recently, Rule 126 of DCA has been explicated: the system can be accurately described by a dis-
crete probability function. However, a means of extending to other rules has not been developed. In this investigation, a
density map of the dynamical behavior of DCA is formulated based on Rule 22 and other totalistic rules. The numerical
results reveal excellent agreement between the model and original automata. Furthermore, the inhomogeneous situation
is also discussed.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, cellular automata (CA) have attracted considerable interest [1–4]. Besides the ability to exhibit
very complex behavior based on relatively simple rules, CA are good models of a wide variety of physical systems
[5,6], including magnetization in solids [7], reaction–diffusion processes [8,9], fluid dynamics for complex situations
[10], growth phenomena [11,12], traffic flow models [13,14] and others. Hence, the dynamics of CA must be investigated
to realize and predict the behavior in real systems.

CA are generally described in terms of two concepts – configuration and evolution rule. Different rules capture var-
ious evolution patterns. Wolfram grouped all the elementary cellular automata (ECA) into four classes: homogeneous
state (class I), separated simple stable or periodic structures (class II), chaotic pattern (class III) and complex localized
structures (class IV). Most ECA can be used to simulate one-dimensional growth and flow. However, when spatial loca-
tion becomes less meaningful in the system, as in spin models with a disordered long-range interaction and the problem
of cell differentiation [15,16], Kauffman networks (KNs) are more effective than ECA at modeling the systems. In fact,
ECA can be considered to be a KN with k = 3 connections, but with an exclusive evolution rule and deterministic con-
nection. The dynamics of KNs have been extensively studied, and the details referred to Refs. [17–19,25].

This study addresses the intermediate class between ECA and KNs. Such intermediate automata are called disor-
dered cellular automata (DCA) or random Boolean networks, whose connections are still chosen randomly but whose
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evolution rules are identical for all cells (nodes) [20]. The dynamics of DCA are still far less understood than those of
ECA and KNs. The generalized Rule 126 applied in DCA can be accurately described by a density map, which has
recently been explicated [21]. Matache and Heidel lately provided a generalized formulation to model the inhomoge-
neous DCA based on Rule 126 [22]. Like Rule 126, Rule 22 is another legal, totalistic and complex rule among the
256 rules. The evolution rule is expresses as the Boolean function, cn(t + 1) = fn[cn�1(t),cn(t),cn+1(t)], where n is the site
index of each cell. Rule 22 then becomes f[0,0,1] = f[0,1,0] = f[1,0,0] = 1, and f = 0 for the remaining five possible
situations. It naturally extends what has been done based on Rule 22. However, the method of so doing has not yet
been determined [22]. Accordingly, the aim of this report is to formulate the density maps to describe the dynamical
behavior of DCA based on Rule 22. Furthermore, the generalized situation is considered and the idea extended to
other totalistic rules. The inhomogeneous situation (in which the numbers of connections of cells differ) is also
discussed.
2. Density map of DCA

Consider a disorder cellular automaton with N cells (N!1). Each cell cn, where n = 1,2, . . .,N, is described by 1 or
0. The connections of a cell cn are assigned randomly from other ones in the identical network, and the number of con-
nections is denoted by k, which is fixed for all cells during evolution. Suppose the states of cells are updated simulta-
neously, and all are governed by Rule 22 from discrete time t to t + 1. The evolution rule is as follows:
cnðt þ 1Þ ¼
1 cnðtÞ þ SnkðtÞ ¼ 1;

0 otherwise;

�
ð1Þ
where Snk ¼
Pk

j¼1cnjðtÞ is the sum of the k random connections of cell cn. In other words, only a single cell is in state 1,
and the others are in state 0 among cn and its connections. Then, cn will be 1 next iteration. Otherwise, cn becomes 0.

The density (the probability that a cell is in state 1) for the DCA at time t is pðtÞ ¼ N�1
PN

n¼1cnðtÞ. Of course, the
density also satisfies p(t) = N1/(N0 + N1), where N1 is the number of cells in state 1 and N0 is the number of cells in
state 0 at time t. Now, we start with the derivation of N1!1(t) which denote that the number of cells are 1 at time t

and remain 1 at time t + 1. From Eq. (1), when cn(t) = 1, cn(t + 1) = 1 if k connections are all in state 0. The formu-
lation is,
N 1!1ðtÞ ¼ N 1½1� pðtÞ�k : ð2Þ
Similarly, the number of cells whose states are changed from 1 to 0 is
N 1!0ðtÞ ¼ N 1 1� ½1� pðtÞ�k
n o

: ð3Þ
Under the condition cn(t) = 0, one (and only one) of the connections must be 1 while the others are 0; then cn(t + 1)
becomes 1. Therefore,
N 0!1ðtÞ ¼ N 0

k

1

� �
pðtÞ½1� pðtÞ�k�1 ¼ N 0kpðtÞ½1� pðtÞ�k�1 ð4Þ
and
N 0!0ðtÞ ¼ N 0 1� kpðtÞ½1� pðtÞ�k�1
n o

: ð5Þ
The above equations must fulfill the normalization condition:
N 1!1ðtÞ þ N 1!0ðtÞ þ N 0!1ðtÞ þ N 0!0ðtÞ ¼ N :
The quality p(t + 1) = N�1 [N1!1 + N0!1] which represents the probability of finding out a cell in state 1 at time
t + 1 can be constructed. Inserting the results from Eqs. (2) and (4) into p(t + 1) yields:
Pðt þ 1Þ ¼ f ðpðtÞÞ ¼ ð1þ kÞpðtÞ½1� pðtÞ�k : ð6Þ
The formulation is the density map of DCA based on Rule 22.
The map must be verified to be consistent with the original system. With N = 103 and k = 12, the first two iter-

ations of the model and the original network are presented. Fig. 1a and b plot p(t + 1) and p(t + 2) versus p(t) indi-
vidually. The numerical results of the map are represented by the solid line and the results of the original automata
are presented as points. They exhibit excellent agreement. Of course, as N (N!1) increases, the agreement will be
approved further.



Fig. 1. Simulation results of DCA based on Rule 22: (a,b) first two iterations P(t + 1) and P(t + 2) versus P(t) with k = 12; numerical
results of the map are represented by the solid line and the results of the original automata are represented by points, (c) the bifurcation
diagram when k 2 R, and (d) the dependence of the maximal Lyapunov exponent k on the parameter k.

936 J.-Y. Ko et al. / Chaos, Solitons and Fractals 36 (2008) 934–939
With k = 2, the evolution rule returns to the original definition in ECA, and the map has a stable fixed point
p� ¼ 1�

ffiffiffi
3
p

=3, which is consistent with the results reported elsewhere [20]. In fact, period-1 is not the only solution
to the map. Fig. 1c displays the bifurcation diagram when k 2 R. As k increases, the density map processes the route
to chaos via period-doubling bifurcations. The maximal Lyapunov exponent k represents the exponential rate at which
an arbitrarily small displacement is amplified, and kmax > 0 suffices to ensure that the maps reveal chaos. Fig. 1d plots
the dependence of the maximal Lyapunov exponent k on the chaotic parameter k. A comparison with the bifurcation
diagram clearly demonstrates the excellent connections.

Now, consider the generalized condition. Rewrite the evolution rule in Eq. (1) as
cnðt þ 1Þ ¼
1 cnðtÞ þ SnkðtÞ ¼ m;

0 otherwise;

�
ð7Þ
where m is the code number of the rule and m 6 k. Similarly, the number of cells that remain unchanged in state 1 is
N 1!1ðtÞ ¼ N 1

k

m� 1

� �
pm�1ðtÞ½1� pðtÞ�k�ðm�1Þ

; ð8Þ
and the number of cells whose state changes from 0 to 1 is
N 0!1ðtÞ ¼ N 0

k

m

� �
pmðtÞ½1� pðtÞ�k�m

: ð9Þ
Finally, the density map is



Fig. 2. (a) Bifurcation diagram with p(0) = 0.20 and m = 2 based on the density map in Eq. (10). In the bifurcating region
k 2 [kmin,kmax] = [4,30], the dynamics follow the route to chaos via period-doubling. (b) Effect of initial conditions p(0). The black
points indicate the area in which the system undergoes the bifurcation, and outside p(t) converges to zero as time passes.
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P ðt þ 1Þ ¼ f ðpðtÞÞ ¼
k

m� 1

� �
þ

k

m

� �� �
pmðtÞ½1� pðtÞ�ðk�mþ1Þ

; ð10Þ
with parameters k, m 2 N. For m = 1, the result is exactly the formulation obtained in Eq. (6). For m = 2, the map cor-
responds to the DCA based on Rule 104, which is another legal, totalistic evolution function [1]. Fig. 2a presents the
bifurcation diagram with p(0) = 0.20 and m = 2. In the bifurcating region k 2 [kmin,kmax] = [4,30], the dynamical
behaviors undergo the periodic doubling route and become chaos with larger k. However, outside the region (including
when k = 2 in which Eq. (7) is analogous to the original definition in ECA), the density p(t) decreases to zero as time
passes. The result verifies that Rule 104 is categorized as class II by Wolfram, although it also exhibits chaotic behaviors
with suitably selected connection parameters as in Fig. 2a. Notably, the dynamics depends on the initial condition p(0).
Fig. 2b shows the numerical results. The black points display the area in which the system exhibits nonzero solutions;
outside the area p(t) converges to zero for all values of k.
3. Inhomogeneous situation and other totalistic rules

The number of connections of each cell is known not be identical in real systems. Therefore, the inhomogeneous
situation must be considered [22]. Suppose Gj is the group of all cells that are connected to kj cells, and Mj is the number
of cells in each group Gj; j = 1,2,3, . . . ,J. N kj

0 ðtÞ denotes the number of cells of Gj in state 0, and N kj

1 ðtÞ denotes the num-
ber of cells of Gj in state 1 at time t. Two variables satisfy the condition Nkj

0 ðtÞ þ Nkj

1 ðtÞ ¼ Mj and the density function is
pðt þ 1Þ ¼
XJ

j¼1

pjðt þ 1Þ ¼
XJ

j¼1

1=N ½Nkj

0!1ðtÞ þ N kj

1!1ðtÞ�; ð11Þ
where pj(t + 1) is the probability that a cell in group Gj is in state 1 at time t + 1. Similar to that above, the final for-
mulation is
pðt þ 1Þ ¼
XJ

j¼1

Mj

N
R1ðtÞ½1� pðtÞ�kj�1

; ð12Þ
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where R1ðtÞ �
N

kj
0

Mj
kjpðtÞ þ

N
kj
1

Mj
½1� pðtÞ� and the formulation is based on the evolution rule in Eq. (1), or
pðt þ 1Þ ¼
XJ

j¼1

Mj

N
R2ðtÞpm�1ðtÞ½1� pðtÞ�kj�m

; ð13Þ
� � � �
where R2ðtÞ �
N

kj
0

Mj

kj

m
pðtÞ þ N

kj
1

Mj

kj

m� 1
½1� pðtÞ�, which is based on the generalized rule in Eq. (7) with m 6 kj. Actu-

ally, m could be replaced by mj in Eq. (13) and the new formulation indicates that each group Gj obeys its own evolution
rule (with its own code number mj).

The above idea can be extended to other totalistic rules. For instance, Rule 150 is f[1,1,1]
= f[0,0,1] = f[0,1,0] = f[1,0,0] = 1, and f = 0 in the remaining four possible situations. The evolution rule must be
rewritten as
cnðt þ 1Þ ¼
1 cnðtÞ þ SnkðtÞ ¼ 1 or k þ 1;

0 otherwise;

�
ð14Þ
and the density map of Rule 150 becomes
pðt þ 1Þ ¼ pðtÞ ð1þ kÞ½1� pðtÞ�k þ pkðtÞ
n o

: ð15Þ
The bifurcation diagram of Eq. (15) is similar to Fig. 1c, and the similarity becomes stronger as k increases. The density
maps of other totalistic rules can be constructed successfully.
4. Conclusion

In brief, a density map was formulated to describe the dynamical behavior of DCA based on Rule 22. Excellent
agreement exists between the model and the original system, and the dynamics was studied using a bifurcation diagram
and the largest Lyapunov exponent. The generalized Rule 22 was investigated, and the idea extended to other totalistic
rules, such as Rules 104 and 150. The inhomogeneous situation is also discussed.

Synchronization behaviors in the coupled networks must be studied because such phenomena are exhibited in many
coupled biological, physical, and even social systems. Due to the discreteness of DCA, the customary deterministic cou-
pling applied in maps cannot be exercised. Accordingly, stochastic coupling technique is introduced to perform the
interaction between two networks [20]. The annealed model (AM) allows for analytical calculations in two coupled
identical DCA. However, when the numbers of connections k of two automata differ or more than two automata
are coupled, the AM is useless. To solve the problem, ideas of stochastic coupling technique and the density map
are combined, and deterministic coupled polynomial maps adopted to describe the density evolution of the coupled net-
works [23,24]. Our further works are that: modulating the coupling techniques and formulating the density evolution
using a locally coupled map lattice, a globally coupled map lattice, or a power-law coupled map lattice. The coupled
inhomogeneous automata are also under investigations.
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