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Abstract. – When a nonlinear oscillator is driven externally, it may become transparent, i.e.,
the output response appears without any dispersion or distortion. Such counter-intuitive feature,
in fact, is a unique zero-dispersion nonlinear resonance (ZDNR). Herein, it is examined on the
base of a generic input-output analysis. The conditions for ZDNR have been clarified and a
power law relation has been established to feature the interplay with noise.

The study of nonlinear oscillators has become the paradigm of nonlinear dynamics where a
variety of new concepts, such as chaos and fractals, has been explored and established [1]. Its
impact to physical research is significant since many systems, such as lasers [2], SQUID [3],
relativistic oscillators [4], electrical circuits [5], polymeric molecules, and others, can be de-
scribed by the models of this type. It is also remarkable to notice that nonlinear oscillators
can be utilized to describe the dynamics of many physical systems with quantum-mechanical
origins. For example, to mention a few, squeezing in classical oscillators [6]. On the other
hand, in the classical aspect, resonance is a generic characteristic and the common feature
is the dependence of the frequency of an eigenoscillator on its energy in which an extremum
exhibits. Surprisingly, in the absence of dissipation, as shown by Soskin [7], a novel type
of nonlinear resonance, zero-dispersion nonlinear resonance (ZDNR), can occur when a weak
periodic force is applied for which the frequency is close to the external eigenfrequency. Since
real systems are subject to dissipation, extension of ZDNR to a dissipative system has been an
important issue. As further shown by Luchinsky, McClintock, Soskin, and Mannella, ZDNR
can still be developed in dissipative systems [8]. Actually, ZDNR is very unique from a generic
input-output point of view. A zero dispersion in spectral domain means that when the phases
are fixed, in time domain the output can be exactly the same as the input, which suggests that
transparent characteristics have been retrieved for the nonlinear oscillator. A similar feature of
transparency also has been found in the interaction between light and matters, e.g., self-induced
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transparency for which short resonant pulses of a given time duration could propagate through
a normally absorbing medium with anomalously low attenuation [9]. Thus, zero-dispersion
nonlinear resonance can be a classical manifestation of the self-induced transparency in quan-
tum electronics. To illustrate many inherent features of ZDNR as well as its changes in the
topology of the basin of attraction, a theory of ZDNR had been developed with an analysis
on the action and the phase difference between the force and response [8]. This approach
had taken the advantage of the adiabatic process. It neglected the terms of high-frequency
oscillation, and thus may be restricted in many practical situations. Still, there remain many
fundamental questions on ZDNR, such as to what extent will the driving force be suitable to cast
in the ZDNR? Essentially, could ZDNR be a generic property in nonlinear dynamical systems?
Should the mismatches in parameters and in sources affect ZDNR critically? Besides, what
is the influence of noise on ZDNR? These concerns could be of practical importance and of
general interest. In this paper, we employ a generic input-output analysis to clarify these issues.

To illustrate the generality of the input-output approach, we consider a general dynamic
system

Ẍ + G(X, Ẋ)Ẋ + ∇U = F (t), (1)

in which X is the output, U is the potential, F (t) is the external driving force, and t is the
time variable. The overdot is used to denote the time derivate. G is used to include the effects
of gain and dissipation. Naively, when the output X(t) is the same as the external driving
force F (t), ZDNR can establish. Thus, with a suitable driving force, say Xz, it may lead to an
output Xz following Ẍz + G(Xz, Ẋz)Ẋz + ∇U = Xz. The stability of Xz can be investigated
via a linear stability analysis combined with the Floquet theory [10,11], and one can derive a
nonautonomous differential variation equation, i.e., δẌ + ∂G

∂Ẋ
ẊδẊ + ∂G

∂X ẊδX +G(X, Ẋ)δẊ +
∂(∇U)

∂X δX = 0, where δX = X − Xz. This is a generic input-output analysis, and the criteria
for ZDNR, thus, could be deduced. However, when there are mismatches in parameters and/or
in the forms of driving force, the analysis is complicated and no generic analysis is available.
Meanwhile, in real cases, noise is inevitable. The influence of external noise on ZDNR remains
to be clarified.

To explore the dynamical features in detail, first we deal with a typical self-excited oscillator
in which G(X, Ẋ) = −(a − bẊ2) and U = 1/2pX2 − 1/4qX4. That is

Ẍ − (a − bẊ2)Ẋ + pX − qX3 = F (t), (2)

where the parameters a and b correspond to the gain coefficient and the damping coefficient
respectively, p is the coefficient of restoring force in the means of the simple harmonic oscillator,
and q is the degree of nonlinearity of the potential. Generally, a time-dependent periodic
F (t) will cause X(t) to behave harmonic oscillations, subharmonic oscillations, and even
chaos [1, 10]. To derive the criteria for ZDNR, we set F (t) = X(t) = Xz(t), where Xz(t)
is presumed as the output. But what mathematical form of F (t) will guarantee the generation
of ZDNR? Based on the previous discussion, it is clear that if Fz(t) satisfy the following
equation, then such Fz(t) would be the answer:

F̈z − (a − bḞz
2
)Ḟz + (p − 1)Fz − qF 3

z = 0 . (3)

We illustrate those particular Fz(t) of a self-exciting oscillator in fig. 1. By using the method
of harmonic balance [11], we derive the approximate solution of limit cycle, Xz(t) ≈ A sin(ωt),

where A =
√

2
3

(p−1)
q [1 −

√
1 − 4q

(p−1)2
a
b ], and ω =

√
1
2 (p − 1)[1 +

√
1 − 4q

(p−1)2
a
b ]. As a result,
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Fig. 1. – The ZDNR phenomenon of a self-excited oscillator.

ZDNR occurs as

a

b
≤ (p − 1)2

4q
. (4)

Direct numerical identification of ZDNR is shown by the dot point in fig. 2. Indeed, ZDNR
can occur to a wide range of parameters, though a breakdown of harmonic balance analysis
leads to the failure of eq. (4). Here, it is worth noting that the product of Aω is found to keep

as a constant
√

4
3

a
b both in the theoretical analysis and numerical simulation. Actually, the

equality Aω =
√

4
3

a
b is necessary for zero phase difference between X(t) and F (t).

Next, let us explore the effect of external noise on ZDNR of the self-excited oscillator.
Without losing generality, we fixed p = 2 and q = 1, and the forced self-excited oscillator
follows:

Ẍ − (a − bẊ2)Ẋ + 2X − X3 = F (t) + η(t), (5)

where η(t) is the Gaussian noise satisfying 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Dδ(t − t′) in which
D is the noise intensity. Here, 〈. . .〉 denotes the time average. Naturally, we evaluate the
mean-square error M between the output X(t) and the desired ZDNR XZ as

M =
1
T

∫ T

0

[X(t) − Xz]2dt, (6)

to quantify the result of the output mismatch. Here the integration time T is taken large
enough and XZ = F (t) = A sin(ωt) for ZDNR. Since the noise here is one kind of the dynamical
noise, the response mismatch should reflect its interplay with the dynamical structure. Hence,
a full identification of the interplay requires the inclusion of the noise strength as well as the
parameters a and b. Nevertheless, one may expect that for a fixed set of (a, b), the output
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Fig. 2. – The phase diagram of ZDNR in terms of a and b. The analytical boundary is shown with

the solid line, a
b

= (p−1)2

4q
, where p = 2 and q = 1, and the independent numerical identification of

ZDNR is denoted with the dot.

mismatch will vary with the noise strength. As shown by fig. 3(a), the mismatch, here
√

M , is
almost linearly proportional to the noise ratio

√
2D/A when a and b are fixed. In other words,√

M = β ·(√2D/A) approximately where β is the proportional constant. It is emphasized that
each data point in fig. 3(a) is evaluated from 80 different time series and 17000 sampling points
(after transience) for each run. We used the Heun algorithm for the integration of eq. (5) [12].
Indeed, the proportional constant β, exhibited in fig. 3(a), further implies that the interplay
between noise and ZDNR can be quantitatively identified. After varying a from 0.1 to 1.1 and
b from 0.8 to 70.4 (totally, 320 sets of a and b), respectively, the dependence of β on a and b,
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Fig. 3. – a) The output mismatch
√

M vs. the noise strength D normalized with the amplitude A of
ZDNR where a = 0.1 and the values of b are shown in the legend. The fitting results are shown with
the thin lines. b) The power law relation of ZDNR in response to external noise for the self-excited

oscillator where β =
√

M/(
√

2D/A). The fitting result, also shown by a thin line, follows β = c( a
b2

)α,
where c = 1.13 and α = 0.276. Totally, 320 sets of a and b are included.
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as shown in fig. 3(b), can be summarized as

β = c ·
( a

b2

)α

, (7)

where c = 1.13 and α = 0.276. Therefore,

√
M = β ·

√
2D

A
= c ·

( a

b2

)α

·
(√

2D

A

)
. (8)

Equation (8) provides the rule for the self-excited oscillator with ZDNR property in response
to external noise. The linearity in fig. 3(b) illustrates the powers of influence on mismatch
in a clear and easy way for all parameters. It is interesting to note that

√
M ∝ √

2D but√
M ∝ (a/b2)α, where the exponent α is non-integer. With a fixed mismatch, the suppression

of the influence of noise can be achieved by the variation of the dynamical structures, a and
b. Again, this shows the inherent characteristics of dynamical noise.

Similar schemes demonstrated above can also be applied to the van der Pol oscillator,

Ẍ − µ(1 − X2)Ẋ + 2X = F (t). (9)

The detail will be presented elsewhere. In contrast, here we utilized this model to illustrate the
sensitivity of ZDNR on source (driving force) mismatch and parameter mismatch. Again, in the
case of ZDNR, the dynamics follows: Ẍz −µ(1−X2

z )Ẋz + 2Xz = Xz, where, correspondingly,
the driving force is Fz(t) = Xz(t). Hence, Ẍz − µ(1−X2

z )Ẋz + Xz = 0. By using the method
of perturbation, the solution, up to the second order, follows:

Xz = (2 − 1
8
µ2) cos ωt +

3
4
µ sin ωt +

3
16

µ2 cos 3ωt − 1
4
µ sin 3ωt − 5

96
µ2 cos 5ωt, (10)

where ω = 1 − 1
16µ2. We drop the oscillation components of the driving force term by term,

starting from the right-hand side of eq. (10) to see the consequence caused by the mismatch
in the driving force (source). We again utilize the mean-square errors to quantify the source
mismatch, i.e., ∆Ii = 1

T

∫ T

0
(Fi − FZ)2dt, where Fi means the driving force without the last-i

terms, and the output mismatch M → Mi for the corresponding i (i = 1, 2, 3, 4). Simulation
shows that all Mi ' 2.722 × 10−2 as ∆I1 = 9.206 × 10−5, ∆I2 = 8.841 × 10−3, ∆I3 =
8.847×10−3, and ∆I4 = 2.797×10−2 for µ = 0.25. Mi will be reduced when µ is smaller while,
again, Mi is roughly a constant for all ∆Ii. In contrast, for the case of self-excited oscillator
M ∝ ∆I. This implies that a small source mismatch does not affect ZDNR seriously. Now,
let us further study the influence of parameter µ . When the parameter µ changes to µ + ∆µ,
it can be expected that X(t) becomes X(t) + ∆X(t). Therefore, with eq. (9), it can be shown
that approximately

∆X ≈
[
−1

4
µ cos ωt +

3
4

sinωt +
3
8
µ cos 3ωt − 1

4
sin 3ωt − 1

4
sin 3ωt − 5

48
µ cos 5ωt

]
∆µ. (11)

After some inequality manipulation, it can be shown that if (|3548µ|+1)|∆µ ¿ 1, then |∆X| ¿ 1.
Indeed, a variation of ∆µ still brings out a small ∆x which suggests the robustness of ZDNR.
Particularly, one can verify that similar ZDNR can still be detected even when ∆µ/µ is large.
In general, | ∆X/X |= α | ∆µ/µ |, where X is the maximum of X and α is a small value.
This again implies that ZDNR can survive in the cases of parameter mismatch.

In conclusion, we have shown a generic input-output analysis to clarify the zero-dispersion
nonlinear resonance in time domain. The condition of ZDNR has been illustrated for the
self-excited oscillators as well as for the van der Pol oscillator. We have shown that ZDNR
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can be established even if there are mismatches in control parameter, driving force (source)
as well as the inclusion of noise. This is attractive in applications since it implies ZDNR
should be a generic property to many physical systems. Practically, an input-output scheme
can be utilized to derive the onset conditions and the stability criteria. Furthermore, the
influence of noise on ZDNR can be identified where a power law relation exhibits. It is
found that the output mismatch

√
M ∝ √

2D for the self-excited oscillator. This is also
true for the van der Pol oscillator when µ . 0.05. Explicitly, in the case of van der Pol
oscillator,

√
M ∝ √

2Dµ when µ is small. When µ is large, no simple linear correspondence
can be deduced. The differences in the responses show that the intrinsic dynamical natures
of oscillators are different. On the other hand, it should be addressed that the influence of
noise can be dramatically different. Indeed, a significantly contrast feature, i.e., noise-induced
linearization, can be achieved in some cases [13]. In such noise-induced linearization cases,
the transparency (ZDNR) is mediated by the interplay between the noise and the dynamical
structure, while the ZDNR here is inherent to the system’s response to the input signal. It
should be noted that there remains one factor that we have not fully reported here, i.e.,
the phase difference between the input and the output. Essentially, an additional relation
is required. For example, for the self-excited oscillator described by eq. (2) the ZDNR with

a phase difference θ also needs tan θ = −aω+ 3
4 bω3A2

−ω2+p− 3
4 qA2 . Different relations are required if the

systems are changed.
Recently, there are extensive progresses on chaos synchronization and chaos control. The

issues of chaos synchronization and chaos control have been extensively investigated in the
last few years and a large number of characterization and control schemes has been devel-
oped [10,14]. In terms of the means of analysis, the calculation of the ZDNR in time domain
here is similar to the resonant control method of Hubler and his co-workers [15]. Although
the ZDNR in the time domain addressed here can be rephrased as a current question of
chaos synchronization and chaos control, i.e., “when does driving lead to a response that
coincides with the driven system; or, when do driving and response synchronize even in a
noisy environment?”, it should be emphasized that the physical concern of ZDNR is different
and may be completely irrelevant to chaos. For example, there is no chaos for the model of
the self-excited oscillator considered. Indeed, the effects of dispersion and dissipation may be
more essential to many nonlinear systems.
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