
January 12, 2009 11:35 02268

International Journal of Bifurcation and Chaos, Vol. 18, No. 12 (2008) 3731–3736
c© World Scientific Publishing Company

SYNCHRONIZATION OF UNCERTAIN
HYPERCHAOTIC AND CHAOTIC SYSTEMS

BY ADAPTIVE CONTROL

ZHI-YU LIU
Department of Physics,

National Sun Yat-sen University,
Kaohsiung 804, Taiwan, R.O.C

CHIA-JU LIU
Graduate Institute of Science Education,
National Kaohsiung Normal University,

Kaohsiung 824, Taiwan, R.O.C

MING-CHUNG HO∗
Department of Physics,

National Kaohsiung Normal University,
Kaohsiung 824, Taiwan, R.O.C

t1603@nknucc.nknu.edu.tw

YAO-CHEN HUNG
Institute of Physics, Academia Sinica,

Taipei 115, Taiwan, R.O.C

TZU-FANG HSU
Department of Applied Physics,

National PingTung University of Education,
Pingtung 900, Taiwan, R.O.C

I-MIN JIANG
Department of Physics,

National Sun Yat-sen University,
Kaohsiung 804, Taiwan, R.O.C

Received November 16, 2007; Revised February 29, 2008

This paper presents the synchronization between uncertain hyperchaotic and chaotic systems.
Based on Lyapunov stability theory, an adaptive controller is derived to achieve synchronization
of hyperchaotic and chaotic systems, including the case of unknown parameters in these two
systems. The T.N.Č. hyperchaotic oscillator is used as the master system, and the Rössler
system is used as the slave system. Numerical simulations verify these results. Additionally, the
effect of noise is investigated by measuring the mean squared error (MSE) of two systems.
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1. Introduction

Chaos synchronization is one of the critical issues
in nonlinear science, for its various potential appli-
cations in physics, secure communications, chem-
ical reactors, control theory, biological networks,
and artificial neural networks, etc. Particularly, in
recent neuroscience research, synchronization plays
a very important role in the analysis of migraine
and in the application of epilepsy. In the recent
decades, the synchronization of chaotic systems
has been extensively investigated both theoreti-
cally and experimentally [Pecora & Carrol, 1990;
Kocarev & Parlitz, 1995; Parlitz et al., 1996; Fis-
cher et al., 2000; Wang et al., 2002; Fotsin et al.,
2006]. Many researchers had shown the possibility
to achieve synchronization between different chaotic
systems [Agiza & Yassen, 2001; Ho et al., 2002;
Ho & Hung, 2002; Ho et al., 2005; Yassen, 2005;
Wu et al., 2007]. However, there are few discus-
sions in scientific literature about synchronization
between hyperchaotic and chaotic systems. Notably,
hyperchaotic systems have been extensively inves-
tigated [Peng et al., 1996; Duan & Yang, 1997;
Grassi & Mascolo, 1998; Grassi & Mascolo, 1999;
Miller & Grassi, 2001; Udaltsov et al., 2001; Li
et al., 2005; Yan & Yu, 2007]. When a system
has more than one positive Lyapunov exponent,
it can clearly generate more complicated dynam-
ics. The complex behaviors of hyperchaotic systems
are believed to have much wider applications. How-
ever, most of the methods are valid only when the
parameters of the systems are known. In practice,
some or all of the parameters of the systems can-
not be exactly known a priori. Therefore, the syn-
chronization of two uncertain chaotic systems is
essential.

In this paper, adaptive control theory [Liao,
1998; Chen & Lü, 2002; Wang et al., 2004; Park,
2005; Yassen, 2005; Ho et al., 2006; Li et al.,
2007] is applied to achieve the synchronization
between uncertain chaotic and hyperchaotic sys-
tems. These techniques were successfully applied
to the Rössler system and the Tamaševičius,
Namajūas, and Čenys (T.N.Č.) hyperchaotic sys-
tems [Tamaševičius et al., 1996]. This paper is orga-
nized as follows. In Secs. 2 and 3, the Rossler system
is controlled and synchronized with T.N.Č. system
under some known and some unknown parameters,
respectively. Section 4 discusses the mean squared
error (MSE) between the two synchronized systems.
Finally, conclusions are drawn in Sec. 5.

2. Controlling the Rössler System
to Synchronize with the T.N.Č.
System Under the Determinate
Parameters

Consider a very simple hyperchaotic oscillator as
a drive system introduced by [Tamaševičius et al.,
1996]. The oscillator consists of a combined parallel-
series LC circuit, a single op amp, a negative resis-
tance and a diode as a nonlinear device. They
are hyperchaotic oscillators with certain assigned
parameter values. The equations of the driving sys-
tem are as follows:

ẋ1 = a1x1 − x2 − x3,

ẋ2 = x1,

ẋ3 = c1(x1 − x4),
ẋ4 = d1[x3 − b1(x4 − 1)H(x4 − 1)],

(1)

where H(u) is the Heaviside function, with the def-
inition H(u < 0) = 0 and H(u ≥ 0) = 1. The
response system is [Rössler, 1976] system:

ẏ1 = −y2 − y3 + u1,

ẏ2 = y1 + a2y2 + u2,

ẏ3 = b2 − c2y3 + y1y3 + u3.

(2)

Let all of the parameters of these two systems be
known, where U = (u1, u2, u3)T is the controller to
be determined. Since the orders of these two sys-
tems are different, we set partial dimensions of the
driving system as the goal to reach synchronization.
Accordingly, Eq. (1) is subtracted from Eq. (2) and
the following notations are applied.

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3, (3)

yielding,

ė1 = −e2 − e3 − a1x1 + u1,

ė2 = e1 + a2e2 + a2x2 + u2,

ė3 = x3e1 + (x1 − c1)e3 + e1e3 − c1(x1 − x4)
− c2x3 + x1x3 + b2 + u3.

(4)

The Lyapunov function of Eq. (4) is selected as
follows

V (e) =
1
2
(e2

1 + e2
2 + e2

3) > 0 (5)

where e = (e1, e2, e3)T and controller U is desig-
nated as follows

u1 = −k1e1 − x3e3 − e2
3 + a1x1,

u2 = −(k2 + a2)e2 − a2x2,
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u3 = −k3e3 + e1 − (x1 − c2)e3

+ c1(x1 − x4)c2x3 − x1x3 − b2.

(6)

where ∀ ki > 0, i = 1, 2, 3; then the derivative along
the trajectory of Eq. (4) is

dV (e)
dt

= e1ė1 + e2ė2 + e3ė3

= e1(−e2 − e3 − a1x1 + u1)

+ e2(e1 + a2e2 + a2x2 + u2)

+ e3(x3e1 + (x1 − c2)e3 + e1e3

− c1(x1 − x4) − c2x3 + x1x3 + b2 + u3)

= −k1e
2
1 − k2e

2
2 − k3e

2
3 < 0.

Based on Lyapunov stability theory, the error
dynamical system Eq. (4) is globally and asymp-
totically stable, i.e.

lim
t→∞ ‖ei‖ = lim

t→∞ ‖yi − xi‖ = 0, i = 1, 2, 3.

Therefore, the states y1, y2 and y3 of the
response system will be synchronized with the cor-
responding states x1, x2 and x3 of the driving
system.

The effectiveness of the proposed synchroniza-
tion approach is numerically simulated. The para-
meters of the T.N.Č. hyperchaotic system are
selected as a1 = 0.7, b1 = 10.0, c1 = 3.0, d1 = 3.0
and the three parameters of the Rössler system are
a2 = 0.2, b2 = 0.2, c2 = 5.7.

According to Eq. (6), the controller (u1, u2, u3)
can be determined as (−k1e1 − x3e3 − e2

3 +

Fig. 1. Synchronization error of the Rössler and T.N.Č.
hyperchaotic systems when all parameters are known. The
control is initiated at t = 200. Solid line: e1 = y1 − x1, dash
line: e2 = y2 − x2, dot line: e3 = y3 − x3.

0.7x1,−(k2 + 0.2)e2 − 0.2x2,−k3e3 + e1 − (x1 −
5.7)e3 +3(x1 −x4)+5.7x3 −x1x3−0.2). The initial
conditions of the driving and response systems are
(0.4, 0.1, 0.2, 0.3) and (0.1, 0.3, 0.5) respectively. Set-
ting k1 = k2 = k3 = 1 and a time step of 0.001, we
start to control the system after t ≥ 200. Figure 1
presents the trajectories of e1, e2 and e3, as it can be
readily seen that the error dynamical system tends
to zero after control.

3. Controlling the Rössler System
to Synchronize with the T.N.Č.
System Under the Uncertain
Parameters

This section will discuss the situation in which
all of the parameters of these two systems are
unknown. Assume that a1, b1, c1, d1, a2, b2, c2

are some unknown constant parameters, and U =
(u1, u2, u3)T is the controller to be designated. Fol-
lowing the same way described in the previous sec-
tion, Eq. (1) is subtracted from Eq. (2) and we
denote

e1 = y1 −x1, e2 = y2 −x2, e3 = y3 −x3, (7)

yielding,

ė1 = −e2 − e3 − a1x1 + u1,

ė2 = e1 + a2e2 + a2x2 + u2,

ė3 = x3e1 + (x1 − c1)e3 + e1e3 − c1(x1 − x4)
− c2x3 + x1x3 + b2 + u3.

(8)

Now, we select the Lyapunov function of
Eq. (8) as,

V (e, ã1, c̃1, ã2, b̃2, c̃2)

=
1
2
(eT e + ã2

1 + c̃2
1 + ã2

2 + b̃2
2 + c̃2

2) > 0, (9)

where e = (e1, e2, e3)T , ã1 = a1 − â1, c̃1 = c1 − ĉ1,
ã2 = a2 − â2, b̃2 = b2 − b̂2, c̃2 = c2 − ĉ2, and â1, ĉ1,
â2, b̂2, ĉ2 are estimate values of the unknown para-
meters a1, c1, a2, b2, c2, respectively. With suitably
controlled U and the following estimates of para-
meters update laws ˙̂a1, ˙̂c1, ˙̂a2,

˙̂
b2 and ˙̂c2, we have

u1 = −k1e1 − x3e3 − e2
3 + â1x1,

u2 = −(k2 + â2)e2 − â2x2,

u3 = −k3e3 + e1 − (x1 − ĉ2)e3 + ĉ1(x1 − x4)

+ ĉ2x3 − x1x3 − b̂2,
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˙̂a1 = −x1e1,

˙̂c1 = −(x1 − x4)e3,
˙̂a2 = (e2 + x2)e2,

˙̂
b2 = e3,

˙̂c2 = −(e3 + x3)e3,

(10)

where ∀ ki > 0, i = 1, 2, 3, and the derivative of
along trajectories of Eq. (8) is

dV (e, ã1, c̃1, ã2, b̃2, c̃2)
dt

= eT ė + ã1
˙̃a1 + c̃1

˙̃c1 + ã2
˙̃a2 + b̃2

˙̃
b2 + c̃2

˙̃c2

= e1(−e2 − e3 − a1x1 + u1)

+ e2(e1 + a2e2 + a2x2 + u2)

+ e3(x3e1 + (x1 − c2)e3 + e1e3

− c1(x1 − x4) − c2x3 + x1x3 + b2 + u3)

+ ã1
˙̃a1 + c̃1

˙̃c1 + ã2
˙̃a2 + b̃2

˙̃b2 + c̃2
˙̃c2

= −k1e
2
1 − k2e

2
2 − k3e

2
3 − ã1x1e1

+ ã2(e2 + x2)e2 − c̃1(x1 − x4)e3

− c̃2(e3 + x3)e3 + b̃2e3 − ã1
˙̂a1

− b̃1
˙̂
b1 − ã2

˙̂a2 − b̃2
˙̂
b2 − c̃2

˙̂c2

= −k1e
2
1 − k2e

2
2 − k3e

2
3 < 0. (11)

Again, based on Lyapunov stability theory, the
error dynamical system Eq. (8) is globally asymp-
totically stable, i.e.

lim
t→∞ ‖ei‖ = lim

t→∞ ‖yi − xi‖ = 0, i = 1, 2, 3.

Therefore, the states y1, y2 and y3 of the response
system will also be synchronized with the states x1,
x2 and x3 of the driving system.

A numerical simulation represents the effective-
ness of the proposed synchronization approach. The
unknown parameters of the T.N.Č. hyperchaotic
system are set to a1 = 0.7, b1 = 10.0, c1 = 3.0,
d1 = 3.0 and the three unknown parameters of
the Rössler system are set to a2 = 0.2, b2 = 0.2,
c2 = 5.7. The initial conditions of the driving and
response systems are (0.4, 0.1, 0.2, 0.3) and (0.1, 0.3,
0.5). Choosing k1 = k2 = k3 = 1 and using a time
step of 0.001, the system is controlled after t ≥ 200
and the initial values of the parameters ˙̂a1, ˙̂c1, ˙̂a2,
˙̂
b2 and ˙̂c2 are all set to zero. Figure 2 shows the tra-
jectories of e1, e2 and e3, and as indicated, the error
dynamical system tended to zero after control.

Fig. 2. Synchronization error of the Rössler and T.N.Č.
hyperchaotic systems when all parameters are unknown. The
control is initiated at t = 200. Solid line: e1 = y1 − x1, dash
line: e2 = y2 − x2, dot line: e3 = y3 − x3.

4. Effect of k and External Noise

Mean squared error (MSE) is now employed to
measure the synchronized efficiency between the
driver system (x1, x2, x3) and the response system
(y1, y2, y3). It is defined as,

MSE =
1
T

∫ T

0
[x(t) − y(t)]2 dt. (12)

From Eqs. (10) and (11), controller U has sev-
eral forms. Various controllers of U are obtained
by modulating values of k. For simplicity here, we
assume k1 = k2 = k3 = k and k varies from one to
200 in one step.

The evolution time T is set sufficiently large
after the response system has been synchronized
with the driver system. Figure 3 displays the
simulation results. As k increases, the quantity
of mean squared error between these two sys-
tems declines indicating that synchronization is
improved.

Moreover, the influence of external noise is also
examined. In real systems, the measurement noise
and dynamical noise are inevitable. Accordingly, the
noise analysis is essential to ensure the stability of
the synchronization between these two systems. The
noise is added to the driving system and Eq. (1),
and can be rewritten as,

ẋ1 = a1x1 − x2 − x3 + ξ(t),
ẋ2 = x1,

ẋ3 = c1(x1 − x4),
ẋ4 = d1[x3 − b1(x4 − 1)H(x4 − 1)],

(13)
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Fig. 3. The diagram presents the values of MSE versus the
value k, where k varies from 1 to 200 with step 1.

Fig. 4. The diagram presents the values of average mean
squared error versus 2D/Wx1 ratio.

where ξ(t) is the Gaussian white noise, with 〈ξ(t)〉 =
0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) where D is the
noise intensity. The parameters of these two sys-
tems are the same as the previous section. Figure 4
shows the results of our numerical simulation,
where Wx1 represents the range of the state x1.
We set k1 = k2 = k3 = k = 10 and T suf-
ficiently large enough to eliminate the transition
state. Various noise intensities are adopted in the
analysis, MSE is calculated on an average of 100
times. If we choose the variable Ra = 2D/Wx1,
the relationship between MSE and Ra can be
characterized as

MSE = α + βRγ
a, (14)

where α = 2.6854E − 7, β = 0.56616, γ = 2.00301.
This simulation shows the robustness of these sys-
tems against noise.

5. Conclusion

In this paper, chaos synchronization between the
hyperchaotic system and the chaotic system with
all parameters unknown is presented by using
the adaptive control technique. The MSE analysis
reveals that the k values of the controller U , can
be adjusted to yield excellent synchronization. Fur-
thermore, external noise was added to the driving
system to investigate the stability of synchroniza-
tion. The result of MSE analysis demonstrate its
robustness against the system noise.

Secure communication has been one of the
important applications of chaotic synchronization
since the last decades [Cuomo & Oppenheim,
1993]. Due to their unpredictability and broad
band spectrum, chaotic signals have been used
to encode information by simple masking (addi-
tion) or using modulation. Recently, the synchro-
nization of chaotic systems with different order
has been applied to such a field [Samuel, 2004].
Moreover, the use of hyperchaotic systems is able
to increase the complexity of transmitting sig-
nals [Peng et al., 1996]. Therefore, the synchro-
nization scheme we propose in this paper would
be beneficial in the application of chaos in secure
communication.
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