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Abstract

Using techniques from active control theory, we demonstrate that two coupled chaotic systems can be phase and anti-phase
synchronized. The techniques are applied to Lorenz, Rossler, and Chen systems. 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Sensitivity to initial conditions is a generic feature
of chaotic dynamical systems. Two chaotic systems
starting from slightly different initial points in the
state space separate away from each other with time.
Therefore, how to control two chaotic systems to be
synchronized has aroused a great deal of interest [1–6].

The concept of synchronization can be extended,
such as generalized synchronization [6,7], phase syn-
chronization [8], lag synchronization [9], and even
anti-phase synchronization [10]. Recently, active con-
trol has been applied to synchronize two identical
chaotic systems. Moreover, it is examined in differ-
ent types of chaotic systems [11–13]. In this Letter,
we generalize active control to phase and anti-phase
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synchronization, and simulate the method by using
Lorenz, Rossler, and Chen systems.

2. Phase synchronization

First, we take two identical Lorenz systems into
consideration:

(1)

{
ẋ1 = σ(y1 − x1),

ẏ1 = rx1 − y1 − x1z1,

ż1 = x1y1 − bz1

and

(2)

{
ẋ2 = σ(y2 − x2) + ua(t),

ẏ2 = rx2 − y2 − x2z2 + ub(t),

ż2 = x2y2 − bz2 + uc(t).

Using active control, we assume that the system with
subscript 1 is to control the system with the sub-
script 2. There are three control functionsua(t), ub(t),
anduc(t) to be determined.
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In order to ascertain the control functions, we can
subtract (1) from (2), and using

(3)
x3 = x2 − x1, y3 = y2 − y1, z3 = z2 − z1,

we can get

(4)

{
ẋ3 = σ(y3 − x3) + ua(t),

ẏ3 = rx3 − y3 − x2z2 + x1z1 + ub(t),

ż3 = x2y2 − x1y1 − bz3 + uc(t).

Then, defining the control functions as

(5)

{
ua(t) = Va(t),

ub(t) = x2z2 − x1z1 + Vb(t),

uc(t) = −x2y2 + x1y1 + Vc(t),

this lead to

(6)

{
ẋ3 = σ(y3 − x3) + Va(t),

ẏ3 = rx3 − y3 + Vb(t),

ż3 = −bz3 + Vc(t).

According to the original method of active control,
(6) can be rewritten as

(7)

(
Va(t)

Vb(t)

Vc(t)

)
= A

(
x3
y3
z3

)
,

and matrixA is given by

(8)A =
(
σ − 1 −σ 0
−r 0 0
0 0 b − 1

)
.

The three eigenvalues of the closed loop system
are chosen as−1, −1, and−1. These choices will
result in a stable system and the synchronization of
two identical Lorenz systems [12,13].

As we know, the eigenvalues have much to do with
the stability of a system. If we letm, n, and k be
the eigenvalues, (6) and (7) can be rewritten in easier
forms

(9)

{
ẋ3 = f1(x3, y3, z3) + Va(t),

ẏ3 = f2(x3, y3, z3) + Vb(t),

ż3 = f3(x3, y3, z3) + Vc(t)

and

(10)

{
Va(t) = −f1(x3, y3, z3) + mx3,

Vb(t) = −f2(x3, y3, z3) + ny3,

Vc(t) = −f3(x3, y3, z3) + kz3,

wheref1(x3, y3, z3), f2(x3, y3, z3), andf3(x3, y3, z3)

are linear functions.

Based on the stability analysis, when all eigenval-
ues are smaller than zero, the system will be conver-
gence. If there is any one of eigenvalues larger than
zero, the system will be divergence. However, what
may happen as any one (or more than one) of eigen-
values equals to zero while the others are less than
zero? The answer is that phase synchronization will
be achieved.

Now we choosem, n, andk to be equal to zero in
turns, and (10) become

(11)

{
Va(t) = −σ(y3 − x3) + mix3,

Vb(t) = −rx3 + y3 + niy3,

Vc(t) = bz3 + kiz3.

Making (m1, n1, k1) = (0,−1,−1), (m2, n2, k2) =
(−1,0,−1), (m3, n3, k3) = (−1,−1,0), and the con-
trol functionsua(t), ub(t), uc(t) can be determined.

Numerical results

RK4 method is used to all of our simulations with
time step being equal to 0.001. We select the para-
meters of two Lorenz systems asσ = 10, r = 28,
b = 2.66 to ensure the chaotic behavior. The initial
values arex1(0) = 0.5, y1(0) = 1.0, z1(0) = 1.5 and
x2(0) = 10.0, y2(0) = 2.0, z2(0) = 2.0. And control
inputs start att = 15.

If (m,n, k) are selected as(m1, n1, k1) = (0,−1,
−1), we can find signalsx1 and x2 have the same
shape whilet > 15. To showx1 and x2 are phase
synchronization, we sketch signalx3(t) (= x2 − x1).
As shown in Fig. 1, it is clear thatx3 is a constant after
t > 15. Nevertheless, fory andz signals, they still are
complete synchronization.

A general approach has been introduced by Gabor
to define the phase of a time series, and it is based
on the Hilbert transform. This definition is also very
attractive in characterization of chaos [15]. In a more
explicit form, the Hilbert transform of a time series
X(t) follows

(12)X̂(t) = 1

π
P.V.

∞∫
−∞

X(τ)

t − τ
dτ,

where P.V. means the Cauchy principal value for the
integral. Thus, a new complex quantityΨ (t) can be
introduced, i.e.,

(13)Ψ (t) = X(t) + iX̂(t) = A(t)eiθ(t),
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Fig. 1. The diagrams of two Lorenz systems become phase synchro-
nization by using active control. (a) shows the time series of signals
x1 andx2, and (b) shows the signalx3(t) (= x2 − x1). The arrows
indicate the time we begin to control.

where θ(t) is the phase andA(t) is the amplitude
[14,15] and they form a conjugate pair. When we use
“Hilbert transform” to define the phase of the signals
x1 and x2, the phase synchronization can be shown
more clearly, as presented in Fig. 2.

Similarly, if (m2, n2, k2) or (m3, n3, k3) are used,
y3(t) (= y2 − y1) or z3(t) (= z2 − z1) will be a
constant, too (Fig. 3). Once more, when using(m2,

n2, k2), x or z signals are still complete synchroniza-
tion; when using(m3, n3, k3), x or y signals are still
complete synchronization.

There are two things noticeable. First, in the condi-
tion of using(m1, n1, k1), (m2, n2, k2), or(m3, n3, k3),
we can also make non-zero numbers less than−1. If
the eigenvalues get smaller, the convergence will be-
come better. Second, we can also make(m,n, k) equal
to (0,0,0). After doing so, all dimensions become
phase synchronization but not complete synchroniza-
tion. However, the result of convergence is not as good
as we got before.

In order to prove our theories, we use standard de-
viation (SD= √

(x(t) − 〈x(t)〉)2/N ) to test the re-
sults of simulation. We makem equal to zero, and
then changen andk from −1 to−100 simultaneously
to analyze signalx3(t) (= x2 − x1) after t > 15. As

Fig. 2. (a) The phase of the two Lorenz signalsx1 andx2 without
being controlled aftert > 15: (circles)θ1, (diamonds)θ2. (b) The
phase of the two signalsx1 andx2 being controlled aftert > 15:
(circles) θ1, (diamonds)θ2. (c) The phase different ofθ1 and θ2
in (b).

shown in Fig. 4, whenn andk get smaller, the values
of SD also become smaller. That is to say, the conver-
gence becomes better.

Let us outline another tool—mutual information
[16,17]. With two time series (labeled by the sub-
scriptsi andj ), one can divide the output range intoS
intervals (S states) and the probabilityPl which is the
chance for al state to appear can be deduced. Thus,
one can deduce the Shannon entropy

Hi = −
S−1∑
l=0

Pl lnPl,

for time seriesi, and the mutual information between
two time series

Mi,j = Hi + Hj − Hi,j ,

whereHi,j = −∑l,m Pl,m lnPl,m is the joint Shannon
entropy in which the joint probabilityPl,m is the
chance such that al state occurs to time seriesi,
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Fig. 3. (a)y3(t) (= y2 − y1) when (m2, n2, k2) is used. (b)z3(t)

(= z2 − z1) when(m3, n3, k3) is used.

Fig. 4. The standard deviation (SD) of the signalx3(t) (= x2 − x1),
wherem equals to zero, andn and k change from−1 to −100
simultaneously.

while a m state appears for time seriesj . Herein,
we label the mutual information between the variables
Xi(t) andYi(t) asM(Xi,Yi). To simplify the notation,
M(x1, x2) ≡ Mx , M(y1, y2) ≡ My , and M(z1, z2)

≡ Mz. For Mx , we choosen = k = −1 and change
m from 0 to −2 to observe the variance ofMx .
Similarly, forMy we makem = k = −1 with changing
n from 0 to −2, and forMz let m = n = −1 with
changingk from 0 to −2. We control two systems
after t = 10, and analyze MI aftert > 15. In the range
−0.1 < eigenvalues� 0, the value of MI decreases,
and it implies the loss of phase synchronization. When

Fig. 5. The diagram of different mutual information versus their
responding eigenvalues. The mutual informationMx is labeled as
a solid line, mutual informationMy is labeled as a dashed line, and
Mz is labeled as a dash-dotted line.

eigenvalues are less than−0.1, Mx , My , andMz will
increase instead. And it means the gain of complete
synchronization. The outcomes are presented in Fig. 5.

Fig. 5 presents another interesting result. ForMz, in
the range−0.8< eigenvalues� 0, the rate of gaining
or losing information is larger than the rate ofMx

orMy . That is to say, it is easier forz signal to become
phase synchronization or lose phase synchronization
thanx signal ory signal dose. We are interested in this
phenomenon, and would like to investigate it further.

The methods are also used to control Rossler
system,

(14)

{
ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

and Chen system,

(15)

{
ẋ = a(y − x),

ẏ = (c − a)x − xz + cy,

ż = xy − bz.

Similar results can be got in Figs. 6 and 7. In other
words, phase synchronization is successfully made.

3. Anti-phase synchronization

Then, we are going to control two identity systems
to anti-phase synchronization.

Making use of the same systems applied in (1)
and (2), we add (1) to (2) instead of subtracting (1)
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Fig. 6. The diagrams of two Rossler systems become phase
synchronization by using active control, wherea = 0.2, b = 0.5,
c = 5.7. (a) shows the time series of signalsx1 andx2, and (b) shows
the signalx3(t) (= x2 − x1). The arrows indicate the time we begin
to control.

from (2). Using

(16)
x4 = x2 + x1, y4 = y2 + y1, z4 = z2 + z1

and following the same techniques, we can get

(17)

{
ẋ4 = σ(y4 − x4) + ua(t),

ẏ4 = rx4 − y4 − x2z2 − x1z1 + ub(t),

ż4 = x2y2 + x1y1 − bz4 + uc(t)

and

(18)

{
ua(t) = Va(t),

ub(t) = x2z2 + x1z1 + Vb(t),

uc(t) = −x2y2 − x1y1 + Vc(t).

From (9) and (10), we can decideva(t), vb(t), and
vc(t) quickly:

(19)

{
Va(t) = −σ(y4 − x4) + mx4,

Vb(t) = −rx4 + y4 + ny4,

Vc(t) = bz4 + kz4.

When making all eigenvaluesm, n, andk are equal
to −1 (of course, other values which are smaller than
zero can be chosen), (17) will converge. If the eigen-
values get smaller, the convergence will become bet-

Fig. 7. The diagrams of two Chen systems become phase synchro-
nization by using active control, wherea = 35, b = 3, c = 38.
(a) shows the time series of signalsx1 andx2, and (b) shows the
signalx3(t) (= x2 − x1). The arrows indicate the time we begin to
control.

ter. In other words, the valuesx1 + x2, y1 + y2, and
z1 + z2 will converge to zero and anti-phase synchro-
nization is reached.

Numerical results

Once more, we select the parameters of two Lorenz
systems asσ = 10, r = 28, b = 2.66 to ensure the
chaotic behavior. The initial values arex1(0) = 0.5,
y1(0) = 1, z1(0) = 1.5 andx2(0) = 0.6, y2(0) = 0.9,
z2(0) = 1.1. And control inputs start att = 15.

Fig. 8 shows the anti-phase synchronization of two
Lorenz systems: (a) displaysx1 and x2 signals, and
(b) displays thex4(t) (= x2 + x1) signal. We can get
similar results fromy andz signals.

4. Conclusion

By means of techniques from active control theory,
we have easily controlled chaotic systems to phase
and anti-phase synchronization. We believe that the
techniques can still be generalized.
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Fig. 8. The diagrams of two Lorenz systems become anti-phase
synchronization by using active control. (a) shows the time series
of signalsx1 andx2, and (b) shows the signalx4(t) (= x2 + x1).
The arrows indicate the time we begin to control.
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