Available online at www.sciencedirect.com

sc.ENcE@D.“w

PHYSICS LETTERS A

ELSEVIE Physics Letters A 324 (2004) 450-457

www.elsevier.com/locate/pla

Phase synchronization in inhomogeneous globally coupled
map lattices

Ming-Chung H&, Yao-Chen Hung*, I-Min Jiang®

@ Department of Physics, National Kaohsiung Normal University, Kaohsiung, Taiwan, ROC
b Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC

Received 6 May 2003; received in revised form 22 August 2003; accepted 9 March 2004
Communicated by A.R. Bishop

Abstract

The study of inhomogeneous-coupled chasyistems has attracted a lot of attentiecently. With simple definition of phase,
we present the phase-locking behavior in ensembledatfatly coupled non-identical maps. The inhomogeneous globally
coupled maps consist of logistic map and tent map simuttasig. Average phase synchronization ratios, which are used
to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters. By using
interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect of external
noise and parameter mismatch into consideragind present the results by numerical simulation.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction strength and chaotic parameter. This is an important
subject because the similayrechronization behavior
can be found in many biological, computational, phys-

Coupled map lattices (CML) are often used as a . : :
ical, chemical, and even social systems.

nvenient m I h havior of real - X . . .
convenient model to study the behavior of real spa In most of the previous studies, the identical cou-

tiotemporal system [1,2]. Much work has been done in led elements are considered. However, the CML con-
the past decades due to the rich phenomena and Com_Igistin of identical elementre lidealized 'and special-
putational efficiency. One of the collective phenom- 9 P

ena presented by CML is the spatiotemporal chaotic Iti?r(\j acfesﬁz\?;ﬁzléizégf SRL:at:;Seyriﬁerzse\l/r;:gf rsagf;'zzz:'
synchronization, i.e., the whole system will be co- ) Y pap

. . : . aid attention to inhomogeneous-coupled chaotic sys-
herent spatially and temporally with suitable coupling Fems [3-5]. They presegr]]t the ensenf)ble behavioryof

CML, which consist of the same maps but with non-
o i identical chaotic parameters. Based on these studies,
Corresponding author. . o
E-mail address: d9123801@student.nsysu.edu.tw people can understand the characteristics of realistic
(Y.-C. Hung). CML more clearly.
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In this Letter, we would like to explore the inho-
mogeneous CML further. We are interested in the lat-
tices consisting of “different maps”, not the uniform
maps with different chaotic parameters. Globally cou-
pling map lattices (GML) are considered in this Letter.
With simple definition of phase [6-9], we present the
phase-locking behavior in ensembles of globally cou-
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Tent map(f1) or logistic maps(f2) can be chosen
asF(x). For two simple reasons, we take logistic map
and tent map into consideration. First, the range of
of two kinds of maps are both given ljy-1, 1], and
the chaotic parameterts anda; are within the same
limits [0, 2]. Therefore, we do not have to normalize
the value of iteration additionally to avoid system

pled tent maps and logistic maps. Average phase syn-dissipation. Second, the characteristic of tent maps

chronization (PS) ratios, vith are used to character-

and logistic maps are well understood. That will help

ize the phase coherent phenomena, depend on differ-us to analyze the complexebavior more efficiently.
ent coupling coefficients and chaotic parameters. By Based on these reasons, the model is established as
using interdependence, the relationship between a sin-in Eq. (2). Critical indexi. is an operator to decide

gle unit and the mean field is illustrated. Moreover, we

take the effect of external noise and parameter mis-
match into consideration and present the results by nu-

merical simulation.
This Letter is organized as follows. In Section 2,

the numbers of two different maps. Wheén= N,

the system comes back to the globally coupled tent
maps. On the contrary, = 0 presents another GML
composed of logistic maps. We are familiar with
these two special cases. Generally, when < N,

we describe our model and analyze the phenomena ofthe system is under a transitional condition between
phase synchronization. In Section 3, the conception globally coupled tent maps and globally coupled
of interdependence is introduced. In Section 4, some logistic maps. An interesting question arisen: do the
discussions about the robustness of PS against thesynchronization and coherent behavior of GML still

external noise and parameetmismatch are contained.
Finally, a brief conclusion is given.

2. Inhomogeneous GML model and PS analysis

Considering a network oN local maps under a

exist in this transitional situation?

To answer this question, let us view the spatial and
temporal evolution of global activities of the lattices.
In the following, we focus our attention on a system
with N = 100, i, = 50, and start from random ini-
tial conditions. By numerical simulation, we report the
caseq; = 1.60,q4; = 1.65 ande = 0.30in Fig. 1, where

common internal field, the system is thus a mean-field the five disordered signals £ 1, 25, 50, 75 and 100)

version of the CML. The explicit form of inhomoge-
neous GML we are going to work with is given by

N .

> F )

j=1

X1 =Q—e)F(x) + (1)

3
N

Here n represents a discrete time stépand j the
index of the elementsi(j = 1,2,..., N), ande the
coupling constant. The formula

1Y ~
~ D F(x)
N &

is called mean field. It is assumed thfatx) gives rise
to chaotic dynamic and is listed as follows:

Fl) = filq) =1-alx,
F(x) = f2(x;)

) igic,

)

1- al(x,i)z, i>ic.
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Fig. 1. Temporal evolution of the single units in the lattices for
N =100,a; = 1.60,q; = 1.65 ands = 0.30. Obviously, the signals
have maxima (minima) at the same time but different amplitudes.
We call the state that shows local maxima (minima) at the same
time as PS state.
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are found. Without achieving complete synchroniza-

tion, the signals present another consistency. That is,
the signals show local maxima (minima) at the same
time while the amplitudes of all coupled elements
still display chaotic actions. Some authors defined the
phenomena as phase synchronization of CML [7-9].
For a trajectory of a continuous dynamic system, the
phase can be well defined by its tangent direction in
the phase space. However, for discrete systems the PS 0.2 ¥

10

o
)
.

o
N
s

average PS rat

phenomena are rarely studied. Stimulated by the sim- TSI et s PN

ilar idea from continuous systems, the authors give an 0.0 - : . . ,

easy and useful definition: the direction phase. For in- 0.0 0.1 02 0.3 04 0.5
homogeneous GML, the direction phase of the side coupling strength ¢

the timen is selected as [7,9]
Fig. 2. The diagram shows the relationship between average

+1, |if sz-&-l —xfl >0, PS ratio rave and coupling strengthe under various chaotic

i
Sp = —1. ifxt . —xi<oO. ®3) parameter pairs(as,aq;). Four chaotic parameters are cho-
’ ntl o= sen: (ar, a;) = (1.30,1.50) (solid circle), (ar, ;) = (1.40, 1.60)
Here S = 1 means the up-phasa and ' = —1 (empty circle),(a;, a;) = (1.80,1.80) (solid inverted triangle) and
n n

means the down-phas. When time passed by, all = (+9%200 (empty inverted triangle).

the elements with the sam® denote the complete
phase synchronization phenomenon.

To describe the PS in inhomogeneous GML more
clearly, PS ratio is used to quantitatively characterize
the PS phenomenon. Let;* be the number of
elements in phase 1 ana,! be the number of
elements in phase-1 at time indexn. Now, the PS
ratio is given by

average PS ratios arise quickly and equal to 1 af-
ter coupling strengtls > 0.22 (solid circle); that is,
the complete PS is achieved aftee> 0.22. (b) For
(as,a;) = (1.40,1.60), the ratios start to increase
rapidly whene ~ 0.20, and diminish slightly when
¢ = 0.26 (empty circle). Then, with the increasef
the value ofrave keeps increasing and approaches 1.
11 » . (c) For (a;,a;) = (1.80,1.80) (solid inverted trian-
r= TZN|(+1)mn + (=Dm, . (4) gle) and (1.99, 2.00) (empty inverted triangle), the
n=1 coupling strengths where the average PS ratios begin
Clearly, whenr = 1, all minima and maxima of to arise are larger than the former conditions. This
elements match each other and it corresponds to theis because the larger the attic parameter is, the
complete phase synchronization. Whenis close harder would it compress the chaotic behavior of each
to zero, phase states of elements are disordered. Toelement, i.e., the synchronization would be accom-
illuminate some special cases and get more generalplished inefficiently wheru; anda; are larger. Sur-
results, we calculate the mean value of PS ratios prisingly, for (a;, a;) = (1.99, 2.00) with ¢ = 0.40, the
(called average PS ratimye) from different initial value ofraye is lower than its nearby points. However,
conditions. Next, we will explore the effect of different generally speaking, stronger coupling would lead to
coupling coefficients and chaotic parameters on the higherraye. What are the reasons? Moreover, do the
average PS ratio. systems with different sizes still present similar char-
Fig. 2 shows the relationship between average PS acteristic? Therefore, the corresponding questions are
ratio rave and coupling strength under various pairs  arisen: (1) why can average PS ratio not keep grow-

of chaotic parameteré&s,, a;). After sufficient tran- ing with the increase of? (2) How does the siz& of
sitional time, we choosd’ = 20000 and average network influenceaye?
the ratios with 1000 different random initial condi- In fact, the ratios we record in Fig. 2 are the mean

tions at each coupling strength. The results are de- value of PS ratios. With regard to the first question,
scribed as follows. (a) Faw,, a;) = (1.30, 1.50), the we choos€(a,, a;) = (1.99, 2.00) and collect the PS
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PS ratio

0.3

0.0 0.1 0.2 0.5

coupling strength ¢

Fig. 3. For(as,a;) = (1.99,2.00), we collect the PS ratios from
1000 different initial conditions instead of calculating their mean
values per coupling strength. The diagram illustrates the PS ratios
are extremely sensitive to the initial condition on the region
£ €[0.19,0.45].

ratios from 1000 different initial conditions instead of
calculating their mean values per coupling strength.
Fig. 3 illustrates the numerical results. Obviously,
for ¢ < 0.19 ande > 0.45, the values of fluctuate
slightly aroundraye in Fig. 1. Fore € [0.19,0.45],
the PS ratios are extremely sensitive to the initial
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Fig. 4. Average PS ratiogye versus coupling strength with different
sizes of the networkv are illustrated. As shown in the diagram, the
PS phenomena would not be altergddifferent sizes of the system
with sufficient coupling.

to do withraye That is, the PS phenomena would not
be altered by different sizes of the system with suffi-
cient coupling.

As we can find above, the chaotic parameter pairs
(as, a;) play important roles in phase synchronization
of the ensemble system. In the following, we will
investigate the relationships among average PS ratios,

condition and present an interesting structure. Due to parameter; anda;. Having coupling strength equal

the effect of different initial conditions, the values
of PS ratio no longer fluctuate aroumg,e slightly

to 0.30, we calculatese under the condition used in
Fig. 2. Choosinga; € [1.1,2.0] andg; € [1.4,2.0],

and the mean values no longer depend on coupling all elements are sure to present chaotic behavior.

strength regularly. For instance, the values spread
uniformly ate = 0.40, whereas they present windows
structure at = 0.38. That will lead to that the average
PS ratio atc = 0.38 is larger than it at = 0.40. The

To describe the details more clearly,(Ifirave) is
used to replace average PS ratigg to demonstrate
the relationship. Results are illustrated in Fig. 5.
In(1/rave) = O corresponds to the complete phase

similar phenomena and structure also appear while synchronization situation. On the contrary, when the

(as, a;) = (1.80, 1.80) and(a;, a;) = (1.40, 1.60).

As to the second question, we also choesed) =
(1.99,2.000 and computeraee under different sizes
of the network. As shown in Fig. 4, we seleft=
10,100 and 1000, respectively. When< 0.35, the
value ofrae for N = 10 is larger thanv = 100, and
it for N = 100 is larger thanv = 1000. It is reason-
able because the interaatibehavior of an ensemble
of larger coupled units is more complex than that of
a fewer units. However, after > 0.35, the ensem-
ble phase behavior fa¥ = 1000 begins to agree with
N = 100 under the compress force from mean field;
aftere > 0.45, the size of network almost has nothing

value of InN1/rave) becomes larger, the phase states
of the whole system get more turbulent. In Fig. 5,
phase synchronization occurs in a range of parameter
values, and coherent behaviors gradually lost as the
values of(a,, a;) increase. Afte, > 1.60 anda; >
1.60, no complete phase synchronization is found. It
means the driving force afiean field fails to compress
the complexity within this parameter region. The
relationships among average PS ratio, parameters
and aq; are irregular. For instance, as > 1.60, the
values of Il/rave for a; =~ 1.20 correspond to a
“valley” terrain while fora, ~ 1.95 correspond to a
“mountaintop” terrain. Why? We expect the problem
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Fig. 5. With fixed coupling strengtre = 0.30, the relation-
ships among Ifl/rave), parametera; and a; are presented.
In(1/rave) = O corresponds to the complete phase synchronization
situation. On the contrary, when the value ofllfrave) becomes
larger, the phase states of the whole system get more turbulent.

can be solved by analyzing the structure of two maps
further. More thorough researches will be done in the
future.

3. Interdependence

In this section, the conception of interdependence
is introduced to illustrate the relationship between a

M.-C. Ho et al. / Physics Letters A 324 (2004) 450-457

Analogously,Ri(k)(Y) can be defined by exchangixg
andY. Further, the “conditional” distance

k

1
7 2

j=1

2
RO X/Y) = —Xs5,,;)

(6)

can be defined. The only difference between Eq. (5)
and Eq. (6) is the indices used in the second term.
FurthermoreR(k) X/Y)~ R,(lk) (X) if the systems are
strongly correlated. When two systems are indepen-
dent, we can expe®® (X/Y) > R® (X). Now, a
measure for dependence can be defined as

T

Z:RWM)
SIRYX/Y)
The value ofS ranges from nearly zero (for indepen-
dent systems) to one (for strongly dependent or iden-
tical systems). Another interdependence measure with
similar properties is

1

SPX/Y) == ©)

T

1 Ry (X)
HO(X/Y) = - Zln WX/Y)’
n=1 n

which differs from S in comparing the conditional
distance with the mean distance of all points gt
While both qualities have proven to be useful in real
data applicationsH is more beneficial to judge the
direction of information transformation [12]. In this
Letter, we will use the definition off to research the
correlation between a single unit and the mean field.
Taking the time series af!(the single unit with
i = 1) asx, and the mean field ag,, we calculate
interdependenceél ® (x/Y) and H® (Y/X) in dif-
ferent parameter pairs numerically. In order to elimi-

®)

sing|e unit and the mean field. Let us assume we have hate transitional signals, sufficient iterations were dis-

two simultaneously measured time series from which
we can reconstrugt-dimensional delay vectors [10]
Xn = (Xpy .oy Xntm—1) and Yo = Ynsvvs Yntm—1)s
wheren represents a discrete time step. kgt and
sn,j» J=1,...,k, denote the time indices of the
nearest neighbors of, andy,. To x,, the squared

carded. Interdependencies were then estimated from
T = 5000 iterations using three-dimensional delay
vectors andk = 20 nearest neighbors. Similarly, all
computations were repeated several times with differ-
ent initial conditions. Fig. 6 show# ® (X/Y) and
H®(y/X) for (a;, a;) = (1.99, 2.00) (Fig. 6(a)) and

mean distance from these neighbors is then given as(a:, a;) = (1.30,1.50) (Fig. 6(b)) as functions of the

[11-13]

k

1
r 2l

j=1

2
RP(X) = — X))

®)

coupling strengthe. Solid line with filled circles is

for H®(X/Y), whereas dash line with empty circles

is for H®(y/X). Comparing Fig. 6 with Fig. 2 and
Fig. 4, it is easy to observe that interdependence agree
with average PS ratios. Our results can be understood
by following arguments.
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(@)

Interdependence H

Interdependence H

0.0 0.2 0.4 0.6 0.8 1.0

coupling strength ¢

Fig. 6. Nonlinear interdependencl ®)(x/Y) and H® (v/X)
between the single uni(i = 1) and the mean field for (a)
(ar,a;) = (1.99,2.00) and (b)(as, ;) = (1.30, 1.50). We take the
time series of! (the single unit withi = 1) asx, and the mean
field asy,,.

(1) In Fig. 6(a), we selecta;, a;) = (1.99,2.00)
as the chaotic parameter pair. Foz= 0.30, we can
see a sharp increase &f%)(X/Y), whereasraye in

(a)
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Fig. 7. The largest Lyapunov exponents as a function of
coupling strength for (a)(as,a;) = (1.99,2.00), and for (b)
(ar, a;) = (1.30,1.50). The flat part corresponds to the phase syn-
chronization state.

intervalse € [0.10,0.18], H®(X/Y) andH® (Y / X)
enlarge unusually and become higher than nearby
points, butrae do not show the same behavior.

Fig. 4 starts to rise at the same coupling strength. For This is because single iis and mean field present

¢ >0.40, H®(X/Y) increase slowly and keep rising
lightly after ¢ > 0.50. The similar behaviors also can
be viewed in the relationship betweeg,e and ¢ in
Fig. 4.

(2) Fig. 6(b) presents the results under, a;) =
(1.30, 1.50). After ¢ > 0.24, the values ot © (X /Y)

4-periods-like iterations under the conditian, a;) =
(1.30, 1.50) ande € [0.10, 0.18]. Due to this, the cor-
relations among them are stronger than in chaotic
cases.

(3) The main advantagH has over other similar
measures for dependence is its asymmetry, i.e., the

andH ®(Y/ X) reach more steady states, which corre- asymmetry can help us to determine the “direction”
spond to the phase coherent states, and keep growingf the coupling. If HO(X/Y) > H®(Y/X), we
gradually with the increase of coupling strength. At just say thaty, is more active tharx,. In fact, the
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system with higher dimension should be more active,

and the response system usually does have higher| g

dimension. In Fig. 6, the inequality/ © (Y/X) >
H®(X/Y) satisfies except extreme strong or weak
coupling. For strong coupling, the two systems are
synchronized and it is hard to judge the direction. As
for weak coupling, the values off depend on the
original dimension of the system. Therefore, from the
inequality H® (Y/X) > H®(X/Y), we can say,

is more active thaty,. In other words, the direction
of coupling is from mean field to a single unit.
As the result of the common driving force from

S A 324 (2004) 450-457
F(x) = fi(x) =1-a@+an)|x]. i<ic
(xi) = fo(xl) =1- az(l—i—an")(x,’;)z, i >ic.
(10)

a denotes the detuning coefficient of parameter and
n' a random number betweenl and 1, thus)’ is
different for each unit.

Our numerical results show that external noise has
nothing to do with phase synchronization, i.e., the
relationship between average PS ratios and coupling
strength are almost the same under the effect of exter-
nal noise. The similar situations also happen to chaotic

the mean field, the PS phenomena are generated inparameter mismatch. Fig. 8 shows the outcomes of

inhomogeneous globally coupled maps. Actually, by
means of interdependence, we can verify the concept
more exactly and identify the relationship between a
single unit and the mean field.

In addition, interdependence also connects well
with the largest Lyapunov exponents. Fig. 7(a) illus-
trates the relationship between the largest Lyapunov
exponents and the coupling strength fer, a;) =
(1.99, 2.00) while Fig. 7(b) does fofa,, a;) = (1.30,
1.50). Unlike continuous oscillators, the plate part in
the figure corresponds to the coherent state [14]. In
other words, fora,, a;) = (1.99, 2.00) the phase syn-
chronization states achieved aftee 0.5. The results
agree with what we get above. Similar connections can
be observed fo(a;,, a;) = (1.30, 1.50).

4, Robustness

In real physical systems, it is impossible to elim-
inate the effect of external noise and parameter mis-
match. Here we consider the two cases and observe
the variation of whole system under these fluctuations.
For external noise, the inhomogeneous model can be
rewritten as

N
X =A—e)F(x)+ %ZF(x,{) + £,
j=1

9)

for theith element at time step. We adopt Gaussian
random process fog! with (£/) = 0 and (£/&7))
028,1”,8,,-. The variance of Gaussian distribution is
denoted byo? [15]. Taking account of parameter
mismatch, Eq. (2) turns out to be

the parameter mismatch under;, ;) = (1.30, 1.50)

@)

atio

average PSr

0.5

(b)

'R

average PS ratio

coupling strength ¢

Fig. 8. The diagram shows the outcomes of the parameter mismatch
under (a)(ar, ;) = (1.30,1.50) and (b)(a;s, a;) = (1.80,1.80). It
illustrates that PS has sufficient robustness against the parameter
mismatch.
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and(a;, a;) = (1.80, 1.80). For(a;, a;) = (1.30, 1.50), Acknowledgements
we choosex = 0.00 (without any mismatch), 0.10

and 0.30, respectively. One can see that under The authors would like to thank the National Sci-
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they are undew = 0.00 except for some fluctuations. g this research under Contract No. NSC 91-2112-
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the phase synchronization cannot be destroyed, either.
It illustrates that PS has sufficient robustness against
such mismatch.
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