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Abstract

The study of inhomogeneous-coupled chaoticsystems has attracted a lot of attention recently. With simple definition of phas
we present the phase-locking behavior in ensembles of globally coupled non-identical maps. The inhomogeneous glob
coupled maps consist of logistic map and tent map simultaneously. Average phase synchronization ratios, which are u
to characterize the phase coherent phenomena, depend on different coupling coefficients and chaotic parameters
interdependence, the relationship between a single unit and the mean field is illustrated. Moreover, we take the effect o
noise and parameter mismatch into consideration and present the results by numerical simulation.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Coupled map lattices (CML) are often used a
convenient model to study the behavior of real s
tiotemporal system [1,2]. Much work has been done
the past decades due to the rich phenomena and
putational efficiency. One of the collective pheno
ena presented by CML is the spatiotemporal cha
synchronization, i.e., the whole system will be c
herent spatially and temporally with suitable coupli
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strength and chaotic parameter. This is an impor
subject because the similar synchronization behavio
can be found in many biological, computational, ph
ical, chemical, and even social systems.

In most of the previous studies, the identical co
pled elements are considered. However, the CML c
sisting of identical elementsare idealized and specia
ized cases because the subsystems in the realistic
tem are never identical. Recently, several papers h
paid attention to inhomogeneous-coupled chaotic
tems [3–5]. They present the ensemble behavio
CML, which consist of the same maps but with no
identical chaotic parameters. Based on these stu
people can understand the characteristics of real
CML more clearly.
.
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In this Letter, we would like to explore the inho
mogeneous CML further. We are interested in the
tices consisting of “different maps”, not the unifor
maps with different chaotic parameters. Globally co
pling map lattices (GML) are considered in this Lett
With simple definition of phase [6–9], we present t
phase-locking behavior in ensembles of globally c
pled tent maps and logistic maps. Average phase
chronization (PS) ratios, which are used to characte
ize the phase coherent phenomena, depend on d
ent coupling coefficients and chaotic parameters.
using interdependence, the relationship between a
gle unit and the mean field is illustrated. Moreover,
take the effect of external noise and parameter m
match into consideration and present the results by
merical simulation.

This Letter is organized as follows. In Section
we describe our model and analyze the phenomen
phase synchronization. In Section 3, the concep
of interdependence is introduced. In Section 4, so
discussions about the robustness of PS agains
external noise and parameter mismatch are containe
Finally, a brief conclusion is given.

2. Inhomogeneous GML model and PS analysis

Considering a network ofN local maps under a
common internal field, the system is thus a mean-fi
version of the CML. The explicit form of inhomoge
neous GML we are going to work with is given by

(1)xi
n+1 = (1− ε)F

(
xi
n

) + ε

N

N∑
j=1

F
(
x

j
n

)
.

Here n represents a discrete time step,i and j the
index of the elements (i, j = 1,2, . . . ,N ), andε the
coupling constant. The formula

1

N

N∑
j=1

F
(
x

j
n

)

is called mean field. It is assumed thatF(x) gives rise
to chaotic dynamic and is listed as follows:

(2)

{
F

(
xi
n

) = f1
(
xi
n

) = 1− at

∣∣xi
n

∣∣, i � ic,

F
(
xi
n

) = f2
(
xi
n

) = 1− al

(
xi
n

)2
, i > ic.
Tent map(f1) or logistic maps(f2) can be chosen
asF(x). For two simple reasons, we take logistic m
and tent map into consideration. First, the range ox

of two kinds of maps are both given by[−1,1], and
the chaotic parametersat andal are within the same
limits [0,2]. Therefore, we do not have to normali
the value of iteration additionally to avoid syste
dissipation. Second, the characteristic of tent m
and logistic maps are well understood. That will he
us to analyze the complex behavior more efficiently
Based on these reasons, the model is establishe
in Eq. (2). Critical indexic is an operator to decid
the numbers of two different maps. Whenic = N ,
the system comes back to the globally coupled
maps. On the contrary,ic = 0 presents another GM
composed of logistic maps. We are familiar w
these two special cases. Generally, when 0< ic < N ,
the system is under a transitional condition betw
globally coupled tent maps and globally coupl
logistic maps. An interesting question arisen: do
synchronization and coherent behavior of GML s
exist in this transitional situation?

To answer this question, let us view the spatial a
temporal evolution of global activities of the lattice
In the following, we focus our attention on a syste
with N = 100, ic = 50, and start from random in
tial conditions. By numerical simulation, we report t
caseat = 1.60,al = 1.65 andε = 0.30 in Fig. 1, where
the five disordered signals (i = 1,25,50,75 and 100)

Fig. 1. Temporal evolution of the single units in the lattices
N = 100,at = 1.60,al = 1.65 andε = 0.30. Obviously, the signals
have maxima (minima) at the same time but different amplitud
We call the state that shows local maxima (minima) at the s
time as PS state.
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are found. Without achieving complete synchroni
tion, the signals present another consistency. Tha
the signals show local maxima (minima) at the sa
time while the amplitudes of all coupled elemen
still display chaotic actions. Some authors defined
phenomena as phase synchronization of CML [7–
For a trajectory of a continuous dynamic system,
phase can be well defined by its tangent direction
the phase space. However, for discrete systems th
phenomena are rarely studied. Stimulated by the s
ilar idea from continuous systems, the authors give
easy and useful definition: the direction phase. For
homogeneous GML, the direction phase of the sitei at
the timen is selected as [7,9]

(3)Si
n =

{
+1, if xi

n+1 − xi
n > 0,

−1, if xi
n+1 − xi

n � 0.

Here Si
n = 1 means the up-phaseS↑ and Si

n = −1
means the down-phaseS↓. When time passed by, a
the elements with the sameSi

n denote the complet
phase synchronization phenomenon.

To describe the PS in inhomogeneous GML m
clearly, PS ratior is used to quantitatively characteri
the PS phenomenon. Letm+1

n be the number o
elements in phase 1 andm−1

n be the number o
elements in phase−1 at time indexn. Now, the PS
ratio is given by

(4)r = 1

T

T∑
n=1

1

N

∣∣(+1)m+1
n + (−1)m−1

n

∣∣.
Clearly, when r = 1, all minima and maxima o
elements match each other and it corresponds to
complete phase synchronization. Whenr is close
to zero, phase states of elements are disordered
illuminate some special cases and get more gen
results, we calculate the mean value of PS ra
(called average PS ratiorave) from different initial
conditions. Next, we will explore the effect of differe
coupling coefficients and chaotic parameters on
average PS ratio.

Fig. 2 shows the relationship between average
ratio rave and coupling strengthε under various pairs
of chaotic parameters(at , al). After sufficient tran-
sitional time, we chooseT = 20 000 and averag
the ratios with 1000 different random initial cond
tions at each coupling strength. The results are
scribed as follows. (a) For(at , al) = (1.30,1.50), the
l

Fig. 2. The diagram shows the relationship between ave
PS ratio rave and coupling strengthε under various chaotic
parameter pairs(at , al ). Four chaotic parameters are ch
sen: (at , al ) = (1.30,1.50) (solid circle), (at , al ) = (1.40,1.60)
(empty circle),(at , al ) = (1.80,1.80) (solid inverted triangle) and
(at , al ) = (1.99,2.00) (empty inverted triangle).

average PS ratios arise quickly and equal to 1
ter coupling strengthε � 0.22 (solid circle); that is,
the complete PS is achieved afterε � 0.22. (b) For
(at , al) = (1.40,1.60), the ratios start to increas
rapidly whenε ≈ 0.20, and diminish slightly when
ε = 0.26 (empty circle). Then, with the increase ofε,
the value ofrave keeps increasing and approaches
(c) For (at , al) = (1.80,1.80) (solid inverted trian-
gle) and (1.99,2.00) (empty inverted triangle), th
coupling strengths where the average PS ratios b
to arise are larger than the former conditions. T
is because the larger the chaotic parameter is, th
harder would it compress the chaotic behavior of e
element, i.e., the synchronization would be acco
plished inefficiently whenat and al are larger. Sur-
prisingly, for(at , al) = (1.99,2.00) with ε = 0.40, the
value ofrave is lower than its nearby points. Howeve
generally speaking, stronger coupling would lead
higher rave. What are the reasons? Moreover, do
systems with different sizes still present similar ch
acteristic? Therefore, the corresponding questions
arisen: (1) why can average PS ratio not keep gr
ing with the increase ofε? (2) How does the sizeN of
network influencerave?

In fact, the ratios we record in Fig. 2 are the me
value of PS ratios. With regard to the first questi
we choose(at , al) = (1.99,2.00) and collect the PS
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Fig. 3. For (at , al ) = (1.99,2.00), we collect the PS ratios from
1000 different initial conditions instead of calculating their me
values per coupling strength. The diagram illustrates the PS r
are extremely sensitive to the initial condition on the reg
ε ∈ [0.19,0.45].

ratios from 1000 different initial conditions instead
calculating their mean values per coupling streng
Fig. 3 illustrates the numerical results. Obvious
for ε < 0.19 andε > 0.45, the values ofr fluctuate
slightly aroundrave in Fig. 1. For ε ∈ [0.19,0.45],
the PS ratios are extremely sensitive to the ini
condition and present an interesting structure. Du
the effect of different initial conditions, the value
of PS ratio no longer fluctuate aroundrave slightly
and the mean values no longer depend on coup
strength regularly. For instance, the values ofr spread
uniformly atε = 0.40, whereas they present window
structure atε = 0.38. That will lead to that the averag
PS ratio atε = 0.38 is larger than it atε = 0.40. The
similar phenomena and structure also appear w
(at , al) = (1.80,1.80) and(at , al) = (1.40,1.60).

As to the second question, we also choose (at , al) =
(1.99,2.00) and computerave under different sizes
of the network. As shown in Fig. 4, we selectN =
10,100 and 1000, respectively. Whenε � 0.35, the
value ofrave for N = 10 is larger thanN = 100, and
it for N = 100 is larger thanN = 1000. It is reason
able because the interaction behavior of an ensemb
of larger coupled units is more complex than that
a fewer units. However, afterε > 0.35, the ensem
ble phase behavior forN = 1000 begins to agree wit
N = 100 under the compress force from mean fie
afterε > 0.45, the size of network almost has nothi
Fig. 4. Average PS ratiosraveversus coupling strength with differen
sizes of the networkN are illustrated. As shown in the diagram, t
PS phenomena would not be altered by different sizes of the system
with sufficient coupling.

to do with rave. That is, the PS phenomena would n
be altered by different sizes of the system with su
cient coupling.

As we can find above, the chaotic parameter p
(at , al) play important roles in phase synchronizat
of the ensemble system. In the following, we w
investigate the relationships among average PS ra
parameterat andal . Having coupling strength equa
to 0.30, we calculaterave under the condition used i
Fig. 2. Choosingat ∈ [1.1,2.0] and al ∈ [1.4,2.0],
all elements are sure to present chaotic beha
To describe the details more clearly, ln(1/rave) is
used to replace average PS ratiosrave to demonstrate
the relationship. Results are illustrated in Fig.
ln(1/rave) = 0 corresponds to the complete pha
synchronization situation. On the contrary, when
value of ln(1/rave) becomes larger, the phase sta
of the whole system get more turbulent. In Fig.
phase synchronization occurs in a range of param
values, and coherent behaviors gradually lost as
values of(at , al) increase. Afterat > 1.60 andal >

1.60, no complete phase synchronization is found
means the driving force ofmean field fails to compres
the complexity within this parameter region. T
relationships among average PS ratio, parameteat

and al are irregular. For instance, asal > 1.60, the
values of ln(1/rave) for at ≈ 1.20 correspond to a
“valley” terrain while for at ≈ 1.95 correspond to a
“mountaintop” terrain. Why? We expect the proble
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Fig. 5. With fixed coupling strengthε = 0.30, the relation-
ships among ln(1/rave), parameterat and al are presented
ln(1/rave) = 0 corresponds to the complete phase synchroniza
situation. On the contrary, when the value of ln(1/rave) becomes
larger, the phase states of the whole system get more turbulent

can be solved by analyzing the structure of two m
further. More thorough researches will be done in
future.

3. Interdependence

In this section, the conception of interdepende
is introduced to illustrate the relationship betwee
single unit and the mean field. Let us assume we h
two simultaneously measured time series from wh
we can reconstructm-dimensional delay vectors [10
xn = (xn, . . . , xn+m−1) and yn = (yn, . . . , yn+m−1),
wheren represents a discrete time step. Letrn,j and
sn,j , j = 1, . . . , k, denote the time indices of thek
nearest neighbors ofxn and yn. To xn, the squared
mean distance from these neighbors is then give
[11–13]

(5)R(k)
n (X) = 1

k

k∑
j=1

(
xn − xrn,j

)2
.

Analogously,R(k)
i (Y ) can be defined by exchangingX

andY . Further, the “conditional” distance

(6)R(k)
n (X/Y ) = 1

k

k∑
j=1

(
xn − xsn,j

)2

can be defined. The only difference between Eq.
and Eq. (6) is the indices used in the second te
Furthermore,R(k)

n (X/Y ) ≈ R
(k)
n (X) if the systems are

strongly correlated. When two systems are indep
dent, we can expectR(k)

n (X/Y ) � R
(k)
n (X). Now, a

measure for dependence can be defined as

(7)S(k)(X/Y ) = 1

T

T∑
n=1

R
(k)
n (X)

R
(k)
n (X/Y )

.

The value ofS ranges from nearly zero (for indepe
dent systems) to one (for strongly dependent or id
tical systems). Another interdependence measure
similar properties is

(8)H(k)(X/Y ) = 1

T

T∑
n=1

ln
Rn(X)

R
(k)
n (X/Y )

,

which differs from S in comparing the conditiona
distance with the mean distance of all points forxn.
While both qualities have proven to be useful in r
data applications,H is more beneficial to judge th
direction of information transformation [12]. In th
Letter, we will use the definition ofH to research the
correlation between a single unit and the mean fiel

Taking the time series ofx1(the single unit with
i = 1) asxn and the mean field asyn, we calculate
interdependenceH(k)(X/Y ) and H(k)(Y/X) in dif-
ferent parameter pairs numerically. In order to elim
nate transitional signals, sufficient iterations were d
carded. Interdependencies were then estimated
T = 5000 iterations using three-dimensional de
vectors andk = 20 nearest neighbors. Similarly, a
computations were repeated several times with dif
ent initial conditions. Fig. 6 showsH(k)(X/Y ) and
H(k)(Y/X) for (at , al) = (1.99,2.00) (Fig. 6(a)) and
(at , al) = (1.30,1.50) (Fig. 6(b)) as functions of the
coupling strengthε. Solid line with filled circles is
for H(k)(X/Y ), whereas dash line with empty circl
is for H(k)(Y/X). Comparing Fig. 6 with Fig. 2 an
Fig. 4, it is easy to observe that interdependence a
with average PS ratios. Our results can be unders
by following arguments.
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Fig. 6. Nonlinear interdependenceH(k)(X/Y) and H(k)(Y/X)

between the single unit(i = 1) and the mean field for (a
(at , al ) = (1.99,2.00) and (b)(at , al ) = (1.30,1.50). We take the
time series ofx1 (the single unit withi = 1) asxn and the mean
field asyn.

(1) In Fig. 6(a), we select(at , al) = (1.99,2.00)
as the chaotic parameter pair. Forε � 0.30, we can
see a sharp increase ofH(k)(X/Y ), whereasrave in
Fig. 4 starts to rise at the same coupling strength.
ε � 0.40,H (k)(X/Y ) increase slowly and keep risin
lightly after ε � 0.50. The similar behaviors also ca
be viewed in the relationship betweenrave and ε in
Fig. 4.

(2) Fig. 6(b) presents the results under(at , al) =
(1.30,1.50). After ε � 0.24, the values ofH(k)(X/Y )

andH(k)(Y/X) reach more steady states, which cor
spond to the phase coherent states, and keep gro
gradually with the increase of coupling strength.
Fig. 7. The largest Lyapunov exponents as a function
coupling strength for (a)(at , al ) = (1.99,2.00), and for (b)
(at , al ) = (1.30,1.50). The flat part corresponds to the phase s
chronization state.

intervalsε ∈ [0.10,0.18], H(k)(X/Y ) andH(k)(Y/X)

enlarge unusually and become higher than nea
points, but rave do not show the same behavio
This is because single units and mean field presen
4-periods-like iterations under the condition(at , al) =
(1.30,1.50) andε ∈ [0.10,0.18]. Due to this, the cor
relations among them are stronger than in cha
cases.

(3) The main advantageH has over other simila
measures for dependence is its asymmetry, i.e.,
asymmetry can help us to determine the “directio
of the coupling. If H(k)(X/Y ) > H(k)(Y/X), we
just say thatyn is more active thanxn. In fact, the
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system with higher dimension should be more act
and the response system usually does have hi
dimension. In Fig. 6, the inequalityH(k)(Y/X) >

H(k)(X/Y ) satisfies except extreme strong or we
coupling. For strong coupling, the two systems
synchronized and it is hard to judge the direction.
for weak coupling, the values ofH depend on the
original dimension of the system. Therefore, from
inequalityH(k)(Y/X) > H(k)(X/Y ), we can sayxn

is more active thanyn. In other words, the directio
of coupling is from mean field to a single un
As the result of the common driving force fro
the mean field, the PS phenomena are generate
inhomogeneous globally coupled maps. Actually,
means of interdependence, we can verify the con
more exactly and identify the relationship betwee
single unit and the mean field.

In addition, interdependence also connects w
with the largest Lyapunov exponents. Fig. 7(a) illu
trates the relationship between the largest Lyapu
exponents and the coupling strength for(at , al) =
(1.99,2.00) while Fig. 7(b) does for(at , al) = (1.30,
1.50). Unlike continuous oscillators, the plate part
the figure corresponds to the coherent state [14]
other words, for(at , al) = (1.99,2.00) the phase syn
chronization states achieved afterε � 0.5. The results
agree with what we get above. Similar connections
be observed for(at , al) = (1.30,1.50).

4. Robustness

In real physical systems, it is impossible to elim
inate the effect of external noise and parameter m
match. Here we consider the two cases and obs
the variation of whole system under these fluctuatio
For external noise, the inhomogeneous model can
rewritten as

(9)xi
n+1 = (1− ε)F

(
xi
n

) + ε

N

N∑
j=1

F
(
x

j
n

) + ξ i
n,

for the ith element at time stepn. We adopt Gaussia
random process forξ i

n with 〈ξ i
n〉 = 0 and 〈ξ i

nξ
j
m〉 =

σ 2δnmδij . The variance of Gaussian distribution
denoted byσ 2 [15]. Taking account of paramete
mismatch, Eq. (2) turns out to be
r

(10)

{
F

(
xi
n

) = f1
(
xi
n

) = 1− at

(
1+ αηi

)∣∣xi
n

∣∣, i � ic,

F
(
xi
n

) = f2
(
xi
n

) = 1− al

(
1+ αηi

)(
xi
n

)2
, i > ic.

α denotes the detuning coefficient of parameter
ηi a random number between−1 and 1, thusηi is
different for each unit.

Our numerical results show that external noise
nothing to do with phase synchronization, i.e.,
relationship between average PS ratios and coup
strength are almost the same under the effect of e
nal noise. The similar situations also happen to cha
parameter mismatch. Fig. 8 shows the outcome
the parameter mismatch under(at , al) = (1.30,1.50)

Fig. 8. The diagram shows the outcomes of the parameter mism
under (a)(at , al ) = (1.30,1.50) and (b)(at , al ) = (1.80,1.80). It
illustrates that PS has sufficient robustness against the para
mismatch.
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and(at , al) = (1.80,1.80). For(at , al) = (1.30,1.50),
we chooseα = 0.00 (without any mismatch), 0.1
and 0.30, respectively. One can see thatrave under
α = 0.10 and 0.30 are approximately the same wh
they are underα = 0.00 except for some fluctuation
For the more chaotic situation,(at , al) = (1.80,1.80),
the phase synchronization cannot be destroyed, ei
It illustrates that PS has sufficient robustness aga
such mismatch.

On the other hand, because of the fluctuation
the parameters, the whole system conforms to w
we call the “inhomogeneous” globally coupled ma
lattices. As shown above, the phase coherent beha
do persist robustly.

5. Conclusions

To sum up, we have shown the PS behavior in
homogeneous globally coupledmap lattices (consiste
with logistic maps and tent maps simultaneously). U
ing the simple definition of phase direction and ph
ratios, we characterize the PS under different cha
parameters, coupling strengths and the sizes of the
work. Besides, the interdependence of a single
and the mean field is under our discussion. Finally,
present the effect of external noise and parameter
match and the strong robustness of phase coherent b
haviors.
.
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