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Abstract

We study the dynamics of two coupled random Boolean networks. Based on the Boolean model studied by Andr
Ali [Int. J. Mod. Phys. B 15 (2001) 17] and the stochastic coupling techniques, the density evolution of networks is p
described by two deterministic coupled polynomial maps. The iteration results of the model match the real networ
By using MSE and the maximal Lyapunov exponents, the synchronization phenomena of coupled networks is also u
discussion.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades, the study of Boolean netwo
has attracted a lot of interest[1–6]. Besides being eas
to deal with, the models are useful to understand
collective behavior and self-organized phenomen
complex systems. Actually, Boolean networks can
regarded as simplified models of real systems, s
as biological networks, cellular automata, biochem
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networks, and physical spin models[7–11]. Therefore,
it is important to investigate the dynamics of Boole
networks for realization and prediction in real n
works.

Recently, Andrecut and Ali show that there is
easier explication given to the generalized Rule 1
for elementary cellular automata: the system can
accurately described by a density map for a rand
Boolean network[12]. The authors consider a simp
Boolean network withN cells in which each cell is
connected tok randomly chosen cells and the param
ter k is known as the connectivity of the network. T
value ofk is fixed, and the state of each cell obeyi
Rule 126 is influenced only by thek connections. The
.
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authors verify that the iterations of the density m
are in good agreement with the numerical results
real network when the parametersN andk are large
enough. The density map of the random Boolean
work is chaotic and exhibits extremely extensive d
namic behaviors. However, the problem is not solv
completely. It is known that the number of connectio
is never identical for each cell in real networks. Late
Matache and Heidel provided a generalized form
to model an inhomogeneous Boolean network[13]. In
addition to the analysis of bifurcation diagrams a
fixed points, the reversed bifurcations are reported
investigated further. Based on these studies, people
understand the characteristics of realistic Boolean
works much more clearly.

In this Letter, we are interested in the co-evoluti
of two coupled Boolean networks. The collective d
namic behavior, especially the synchronization p
nomena, is a very important topic in nonlinear scien
Owing to the discrete specialty of Boolean networ
the customary deterministic coupling applied in ma
cannot be exercised. Thus, we introduce the stoch
coupling technique[14,15] to perform the interaction
between two networks. As to the physical systems,
model possesses potential applications to investi
the synchronization in two lasers coupled face to f
if the solid-state lasers are replaced by random la
[16–19]. It would also be helpful when we study th
dynamics of coupled gene networks[20]. Though the
networks are stochastically coupled, our results sh
that two deterministic coupled polynomial maps c
accurately describe their density evolution after s
tistic calculations. This outcome is important beca
the model provides predictions of real networks a
allows analytical calculations. The iteration results
the model tally well with the real networks. More
over, we investigate the synchronization phenom
of coupled networks and analyze it by using MSE a
Lyapunov exponents.

This Letter is organized as follows. In Section2,
we introduce the model of the random Boolean n
works and the stochastic coupling techniques. We p
vide the deterministic coupled maps to model
two stochastically coupled networks. Numerical
sults show the excellent agreement between the
system and the model. In Section3, we investigate
the synchronization phenomena of coupled netwo
and analyze it by using MSE and Lyapunov exp
nents. Finally, a brief conclusion and further works
given.

2. The model of stochastically coupled random
Boolean networks

Consider two Boolean networks withN cells indi-
vidually. Each cellci

n, wherei = 1,2, indicates net-
work 1 or network 2 andn = 1,2, . . . ,N , is described
by two values 1 or 0. The connections of a cellci

n could
be assigned randomly from its belonged network,
the number of connections is denoted byk fixed for all
cells during evolution. Suppose the states of the c
are updated simultaneously, and all are governed
the generalized Rule 126 from discrete timet to t + 1:
if the state ofci

n and its connections are all 1 or 0, th
ci
n(t + 1) = 0, otherwise,ci

n(t + 1) = 1. The density
(the probability that a cell is in state 1) of a single n
work is given by

pi(t) = N−1
N∑

n=1

ci
n(t),

and the iterations of density can be exactly formula
as in[12]:

pi(t + 1) = f i
(
pi(t), k

)
(1)= 1− pi(t)k+1 − [

1− pi(t)
]k+1

,

wherei = 1,2 and the parameterk � 1.
Our purpose in this Letter is to study the intera

tion of the two networks, and provide a similar dens
function to model the dynamical behavior. Unlike ty
ical systems, the deterministic coupling here is use
due to the discrete characteristics. Thus, we apply
stochastic coupling technique[14,15] to couple the
networks 1 and 2. The techniques are shown as
lows. Suppose two evolution operators

c1,2(t + 1) = Ŝ ◦ R̂
(
c1,2(t)

)
govern the dynamics of coupled networks. The op
ator R̂, as shown above, is the generalized Rule
which is applied to the both networks when they
not coupled. The role of the stochastic coupling
erator Ŝ is to compare the states of all cells in ea
network. If c1

n(t) = c2
n(t), both states will stay invari

ant. And ifc1(t) �= c2(t), the coupling will not act and
n n
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the states will be unchanged with the probability 1−g

(0 � g � 1) or the states of connected cells will be s
to the same value with probabilityg. The values are
set to equal toc1

n(t) or c2
n(t), with the same probabil

ity 1/2 for each choice. Thus, the stochastic coupl
operator can be expressed as[14]:

(2)

Ŝn

(
c1,2) =




c
1,2
n if c1

n = c2
n,

c
1,2
n with probability 1− g, if c1

n �= c2
n,

c1
n with probabilityg/2, if c1

n �= c2
n,

c2
n with probabilityg/2, if c1

n �= c2
n.

Next, the coupled model can be formulated s
by step. LetN1,2

1 be the number of cell in state

for two networks andN1,2
0 be the number of cell in

state 0. The variables satisfy the conditionN1
1 +N1

0 =
N2

1 + N2
0 = N . After being acted by the evolutio

operatorR̂, which indicates the free evolution of ind
vidual networks, the network 1 (network 2) posses
the probabilityf 1(p1) (f 2(p2)) of finding a cell in
state 1. Therefore, after the first sub-step,N

1,2
1 will

turn out to be

(3)N
1,2
1 = Nf 1,2(p1,2),

andN
1,2
0 will become

(4)N
1,2
0 = N

[
1− f 1,2(p1,2)].

Now, let us take the second sub-step of the evo
tion into consideration. When cellc1

n is in state 1, the
corresponding cellc2

n may be in state 1 with probabi
ity f 2(p2) or in state 0 with probability 1− f 2(p2).
Thus, for network 1, after being operated byŜn the
number of cells staying in state 1 is

N1
1→1 = Nf 1(p1)f 2(p2)

(5)+ Nf 1(p1)[1− f 2(p2)](1− g

2

)
.

The former part in the right-hand side of Eq.(5) corre-
sponds to the condition(c1

n, c
2
n) = (1,1), and the state

of c1
n will remain in state 1 under the action of̂S.

The latter part corresponds to the condition(c1
n, c

2
n) =

(1,0), and the state ofc1
n will remain in state 1 with

probability 1− g/2. Similarly, the number of cell
changing their states from 1 to 0 is

(6)N1 = Nf 1(p1)[1− f 2(p2)]g
,
1→0 2
whereg/2 is the probability thatc1
n will be set to equa

to c2
n(t) (state 0).

When cellc1
n is in state 0, the corresponding cellc2

n

may be in state 1 or in state 0. Using a similar ar
ment as above for network 1, the number of cells t
remain in state 0 after coupling is

N1
0→0 = N

[
1− f 1(p1)][1− f 2(p2)]

(7)+ N
[
1− f 1(p1)]f 2(p2)(1− g

2

)
.

The number of cells that are changing their states f
0 to 1 is

(8)N1
0→1 = N

[
1− f 1(p1)]f 2(p2)g

2
.

Obviously, the above equations satisfy the normal
tion condition:

(9)N1
1→1 + N1

1→0 + N1
0→0 + N1

0→1 = N.

We can now construct the quantity

p1(t + 1) = N−1[N1
1→1 + N1

0→1

]
which represents the probability of finding a cell
network 1 in state 1 at timet + 1. Inserting the result
from Eqs.(5) and (8)into p1(t +1), we get the results

(10)p1(t + 1) =
(

1− g

2

)
f 1(p1) + g

2
f 2(p2).

Repeating the procedure above, the probability for
work 2 will become

(11)p2(t + 1) =
(

1− g

2

)
f 2(p2) + g

2
f 1(p1).

Thus, the final formula is as follows:

(12)

{
p1(t + 1) = (1− ε)f 1

(
p1

) + εf 2
(
p2

)
,

p2(t + 1) = (1− ε)f 2
(
p2

) + εf 1
(
p1

)
,

whereε = g/2 (0� ε � 1/2) is the coupling strength
From Eq.(12), in the limit N → ∞, we can use

the deterministic coupled map to describe the dyna
behavior of coupled Boolean networks, regardless
the discrete nature of networks and the stochastic
pling methods. Actually, it is necessary to make s
that the coupled model tallies with the real syste
Fig. 1shows the numerical results of the model (me
plot) and the actual coupled networks (points). Hav
N = 1000,ε = 0.15 andk = 4, we present the firs
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Fig. 1. The diagram presents the numerical results of the model
(mesh plot) and the actual coupled networks (points) with
N = 1000,ε = 0.15 andk = 4. The graphs (a), (b), (c) illustrate
the first three iterationsp1(t + 1), p1(t + 2), andp1(t + 3) versus
p1(t) andp2(t) individually.

three iterations of the model and the real netwo
Fig. 1(a), (b), and (c) illustratep1(t + 1), p1(t + 2),
and p1(t + 3) versusp1(t) and p2(t) individually.
One can see the excellent agreement between the
Boolean system and the coupled maps. With the
crease ofN , the agreement will be approved furth
Various parameter pairs and the relationship am
p2(t +m) (wherem = 1,2,3),p1(t), andp2(t) is also
under our consideration (not presented). The ma
between the model and the real system is also ex
lent with other parameters.

3. Model dynamics and synchronization

In this section, we study the dynamics of the mo
and the synchronization phenomena.

Choosing the number of connectionsk = 4 and the
initial condition(p1(0),p2(0)) = (0.7,0.1), the bifur-
cation diagrams forp1(t) andp2(t) versus different
coupling strengthsε are illustrated inFig. 2. One can
observe that the chaotic behaviors ofp1(t) andp2(t)

is suppressed gradually with the increase of the c
pling strength whenε is small. Forε > 0.097, chaos
reappears and remains no matter what the value ofε is.
Different initial conditions may alter the bifurcation
the region of weak coupling. However, when coupli
strength is large enough, the dynamics are indep
dent of the choices ofp1(0) andp2(0). They depend
only on the connectivity parameterk. The results of
real networks(N � 10000) are similar toFig. 2.

To characterize the effects of coupling on the
dividual behavior more clearly, we analyze the d
pendence of the maximal Lyapunov exponentλmax
[21–23]on the coupling strengthε. The maximal Lya-
punov exponentλmax represents the exponential ra
at which an arbitrarily small displacement is amp
fied, soλmax > 0 suffices to ensure the dynamic
coupled maps is chaotic.Fig. 3(a) shows the numer
ical result withk = 4 and(p1(0),p2(0)) = (0.7,0.1)

under different values ofε. Comparing with the bi-
furcation diagrams inFig. 2, it is easy to observe th
excellent connections: the negativeλmax corresponds
to the periodic windows in the bifurcation diagram
and the positiveλmax corresponds to the chaotic r
gions. Thus, relating to what we have stated above
ε > 0.097,λmax is positive and remains no matter wh
the value ofε is.
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Fig. 2. The diagram shows the bifurcation diagrams forp1(t) and
p2(t) versus different coupling strengthε whenk = 4 and the initial
condition(p1(0),p2(0)) = (0.7,0.1).

Now, we investigate the synchronization of two n
works induced by the stochastic coupling. We evalu
the mean-square error (MSE) betweenp1(t) andp2(t)

after controlling. The definition of MSE is

(13)MSE= 1

n

n∑
t=1

(
p1(t) − p2(t)

)2
.

We illustrate the results of the coupled density map
Fig. 3(b) marked with solid circles. Whenε < 0.050,
the coupling is too weak to overcome the diverg
nature of nonlinearity. Thus, the MSE is much larg
than zero and no synchronization is achieved. Forε ∈
[0.050,0.078], corresponding to the period-2 in bifu
cations, the two coupled maps possess the same
points but different phase. Consequently, the value
MSE can be obtained easily by inserting the val
of the two fixed points of the bifurcation diagram in
p1(t) andp2(t) in Eq. (13). Whenε ∈ [0.078,0.097],
Fig. 3. In the conditionk = 4 and (p1(0),p2(0)) = (0.7,0.1).
(a) The relationship between the maximal Lyapunov exponentλmax
of coupled networks and the coupling strengthε. (b) The relation-
ship between MSE and the coupling strengthε, where the results o
model are denoted by solid circles and the results of real system
denoted by empty circles.

we get three possible values of MSE because the
tem possesses three possible stable solutions in
parameter region. The periodic iterations of the t
maps may be in phase (corresponding to MSE= 0) or
out of phase (corresponding to the other two valu
The typical time series are presented inFig. 4, where
(a) corresponding to MSE= 0, (b) (period-4) corre-
sponding to the largest MSE and (c) (period-8) c
responding to the value between (a) and (b). Fina
for ε > 0.097, MSE become zero and the compl
synchronization is achieved. The results of real s
tem (N = 104 and transition time steps are larger th
106) are denoted by empty circles.

We also study the situation for a different conne
tivity k. Choosingk = 16 and the initial condition use
above, we illustrate the bifurcation diagram, the ma
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Fig. 4. The diagram presents the typical time series of the two m
whenε ∈ [0.078,0.097]. (a) corresponds to MSE= 0, (b) (period-4)
corresponds to the largest MSE inFig. 3, and (c) (period-8) corre
sponds to the value between (a) and (b).

mal Lyapunov exponent and MSE versus various c
pling strengths inFig. 5. As what we expect, theλmax
connects to the bifurcation diagram well. Forε > 0.23,
complete synchronization can be observed.

4. Conclusion and further works

In this Letter, we study the dynamics of two co
pled random Boolean networks. Based on the Bool
model and the stochastic coupling techniques, the d
sity evolution of networks is accurately described
two deterministic coupled polynomial maps. We sh
the excellent agreement between the model and
real system. Moreover, by using the MSE and the m
imal Lyapunov exponents, we investigate the synch
nization phenomena of coupled networks.
Fig. 5. In the conditionk = 16 and(p1(0),p2(0)) = (0.7,0.1).
(a) The bifurcation diagrams ofp1(t). The result ofp2(t) is sim-
ilar with p1(t). (b) The relationship betweenλmax and the coupling
strengthε. (c) The relationship between MSE andε, where the re-
sults of model are denoted by solid circles and the results of
system are denoted by empty circles.

The advantages our work offers are the model p
vides predictions of real networks and it allows ana
ical calculations. Actually, the deterministic coupl
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ys.
model in Eq.(12) is the typical formula used to de
scribe the dynamics of globally coupled map latt
(GML) after the system falls in a two-cluster attra
tor [24,25]. The stochastic coupling techniques c
be explored further to couple more than two Boole
networks. Depending on the coupling techniques,
present researches can be extended to locally
pled map lattice, globally coupled map lattice, or ev
power-law coupled map lattice. As we know, the si
ulations take a lot of time if we considerNn coupled
networks consisting ofN cells, whereNn andN are
sufficiently large. However, with the aid of the co
pled model, it is relatively easy to investigate su
problems. The topics will be investigated in our fu
ther studies.
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