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Abstract

We study the dynamics of two coupled random Boolean networks. Based on the Boolean model studied by Andrecut and
Ali [Int. J. Mod. Phys. B 15 (2001) 17] and the stochastic coupling techniques, the density evolution of networks is precisely
described by two deterministic coupled polynomial maps. The iteration results of the model match the real networks well.
By using MSE and the maximal Lyapunov exponents, the synchronization phenomena of coupled networks is also under our
discussion.

0 2005 Elsevier B.V. All rights reserved.

PACS: 02.50.-r; 05.45.Xt; 05.65.+b

Keywords: Boolean networks; Stochastic coupling; Synchronization

1. Introduction networks, and physical spin mod¢§ls-11]. Therefore,

it is important to investigate the dynamics of Boolean
networks for realization and prediction in real net-
works.

Recently, Andrecut and Ali show that there is an
easier explication given to the generalized Rule 126
for elementary cellular automata: the system can be
accurately described by a density map for a random
Boolean networK12]. The authors consider a simple
Boolean network withV cells in which each cell is
connected t@ randomly chosen cells and the parame-
 Correspondi terk is known as the connectivity of the network. The
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In the past decades, the study of Boolean networks
has attracted a lot of intergdt-6]. Besides being easy
to deal with, the models are useful to understand the
collective behavior and self-organized phenomena in
complex systems. Actually, Boolean networks can be
regarded as simplified models of real systems, such
as biological networks, cellular automata, biochemical
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authors verify that the iterations of the density map nents. Finally, a brief conclusion and further works are

are in good agreement with the numerical results of a given.

real network when the paramete¥sandk are large

enough. The density map of the random Boolean net-

work is chaotic and exhibits extremely extensive dy- 2. The model of stochastically coupled random

namic behaviors. However, the problem is not solved Boolean networks

completely. Itis known that the number of connections

is never identical for each cell in real networks. Lately, Consider two Boolean networks witk cells indi-

Matache and Heidel provided a generalized formula vidually. Each cellcj;, wherei = 1, 2, indicates net-

to model an inhomogeneous Boolean netwd. In work 1 or network 2 ana =1,2,..., N, is described

addition to the analysis of bifurcation diagrams and by two values 1 or 0. The connections of a ¢éltould

fixed points, the reversed bifurcations are reported and be assigned randomly from its belonged network, and

investigated further. Based on these studies, people canthe number of connections is denotedidfjxed for all

understand the characteristics of realistic Boolean net- cells during evolution. Suppose the states of the cells

works much more clearly. are updated simultaneously, and all are governed by
In this Letter, we are interested in the co-evolution the generalized Rule 126 from discrete tinte ¢ + 1:

of two coupled Boolean networks. The collective dy- if the state of!, and its connections are all 1 or 0, then

namic behavior, especially the synchronization phe- ¢ (¢ + 1) = 0, otherwisec! (t + 1) = 1. The density

nomena, is a very important topic in nonlinear science. (the probability that a cell is in state 1) of a single net-

Owing to the discrete specialty of Boolean networks, work is given by

the customary deterministic coupling applied in maps

cannot be exercised. Thus, we introduce the stochastic ; 1 al ;

coupling techniqugl4,15]to perform the interaction  ” =N ch(t)’

between two networks. As to the physical systems, the n=1

model possesses potential applications to investigateand the iterations of density can be exactly formulated

the synchronization in two lasers coupled face to face as in[12]:

if the solid-state lasers are replaced by random lasers il

[16-19] It would also be helpful when we study the 7 (¢ 1 =f'(p'(). k)

dynamics of coupled gene networ@9]. Though the =1-p () —[1- pi(t)]"“, (1)

networks are stochastically coupled, our results show

that two deterministic coupled polynomial maps can Wherei =1,2 and the parametér> 1. _

accurately describe their density evolution after sta-  OUr purpose in this Letter is to study the interac-

tistic calculations. This outcome is important because tion of the two networks, and provide a similar density

the model provides predictions of real networks and function to model the dynamical behavior. Unlike typ-
allows analytical calculations. The iteration results of ic@l Systems, the deterministic coupling here is useless
the model tally well with the real networks. More- due to th_e dlscre'te characFerlstlcs. Thus, we apply the
over, we investigate the synchronization phenomena Stochastic coupling techniqué4,15] to couple the
of coupled networks and analyze it by using MSE and Nétworks 1 and 2. The techniques are shown as fol-
Lyapunov exponents. lows. Suppose two evolution operators

This Letter is organized as follows. In Secti@n
we introduce the model of the random Boolean net-
works and the stochastic coupling techniques. We pro- govern the dynamics of coupled networks. The oper-
vide the deterministic coupled maps to model the ator R, as shown above, is the generalized Rule 126
two stochastically coupled networks. Numerical re- which is applied to the both networks when they are
sults show the excellent agreement between the realnot coupled. The role of the stochastic coupling op-
system and the model. In Secti@ we investigate  erator$ is to compare the states of all cells in each
the synchronization phenomena of coupled networks network. Ifc,ll(t) = cS(t), both states will stay invari-
and analyze it by using MSE and Lyapunov expo- ant. And ifcl(r) # c2(t), the coupling will not act and

c2(t +1) = S o R(c2())
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the states will be unchanged with the probability

(0 < g <1) or the states of connected cells will be set
to the same value with probability. The values are
set to equal tal(r) or c2(t), with the same probabil-
ity 1/2 for each choice. Thus, the stochastic coupling
operator can be expressed 84]:

b2 if ck=¢2,
12 . " w1, 2
& (12 cy’”  with probability 1— g, if ¢; # ¢4,
S, (C 5 ) — n n

¢k with probabilityg/2, if ¢} # ¢2,
c2  with probability g /2, if ¢t # c2.
2

Next, the coupled model can be formulated step
by step. LetNll’2 be the number of cell in state 1
for two networks andNé’2 be the number of cell in
state 0. The variables satisfy the condithl—!— Nt =
le + N2 = N. After being acted by the evolution

operatorR, which indicates the free evolution of indi-
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whereg /2 is the probability thadf,} will be set to equal
to c2(1) (state 0).

When cellc! is in state 0, the corresponding cefl
may be in state 1 or in state 0. Using a similar argu-
ment as above for network 1, the number of cells that
remain in state O after coupling is
No.o=N[1-r*(p)][1- r*(p?)]

8
+N[L= 707 (1- ).
The number of cells that are changing their states from
Otolis

Ng_1=N[1- Y (p")]f?(p%) 5 )

Obviously, the above equations satisfy the normaliza-
tion condition:

@)

8

©)

1 1 1 1
Ni,1+Ni,o+Ng,o+No,1=N.

vidual networks, the network 1 (network 2) possesses We can now construct the quantity

the probability 1(p) (f2(p?)) of finding a cell in
state 1. Therefore, after the first sub-staql;2 will
turn out to be

N2 = NfE2(ph2), ®)
andNol’2 will become
Ng?=N[1- fL2(p*?)]. @)

Now, let us take the second sub-step of the evolu-
tion into consideration. When celf is in state 1, the
corresponding ceh‘,% may be in state 1 with probabil-
ity f2(p?) orin state 0 with probability & f2(p?).
Thus, for network 1, after being operated By the
number of cells staying in state 1 is

NiL1=NFY(p") F2(p%)

NP ) (1-5) ©
The former part in the right-hand side of E§) corre-
sponds to the conditio@@}, c2) = (1, 1), and the states
of ¢! will remain in state 1 under the action 6F.
The latter part corresponds to the conditiop, c2) =
(1,0), and the state ch,ll will remain in state 1 with
probability 1— g/2. Similarly, the number of cells
changing their states from 1to O is

NLo=Nr ()= £2()]5 ©®

pte+1) =N Ni, + N, 1]

which represents the probability of finding a cell of
network 1 in state 1 at time+ 1. Inserting the results
from Eqgs.(5) and (8)into pl( + 1), we get the results:

)Y+ £ 7209,

Repeating the procedure above, the probability for net-
work 2 will become

Pe+1= <1 — (10)

Pt +1) = (1— %)fz(pz) +2Y @
Thus, the final formula is as follows:
pre+1D=—2o) 1 (ph) +ef2(p?).
2 2(,2 1,1 (12)
pAt+ 1) =1 —e) f2(p?) +ef(ph),

wheree = g/2 (0 < ¢ < 1/2) is the coupling strength.

From Eq.(12), in the limit N — oo, we can use
the deterministic coupled map to describe the dynamic
behavior of coupled Boolean networks, regardless of
the discrete nature of networks and the stochastic cou-
pling methods. Actually, it is necessary to make sure
that the coupled model tallies with the real system.
Fig. 1shows the numerical results of the model (mesh
plot) and the actual coupled networks (points). Having
N =1000,e = 0.15 andk = 4, we present the first
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Fig. 1. The diagram presents the numerical results of the model
(mesh plot) and the actual coupled networks (points) with
N = 1000, e = 0.15 andk = 4. The graphs (a), (b), (c) illustrate
the first three iterationpl(r + 1), p1(r + 2), andp( + 3) versus
pL(r) and p2(¢) individually.
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three iterations of the model and the real networks.
Fig. 1(a), (b), and (c) illustratel(z + 1), p(t + 2),

and pl(r + 3) versus pl(r) and p2(s) individually.

One can see the excellent agreement between the real
Boolean system and the coupled maps. With the in-
crease ofN, the agreement will be approved further.
Various parameter pairs and the relationship among
p2(t+m) (wherem = 1, 2, 3), p1(1), andp?(r) is also
under our consideration (not presented). The match
between the model and the real system is also excel-
lent with other parameters.

3. Model dynamics and synchronization

In this section, we study the dynamics of the model
and the synchronization phenomena.

Choosing the number of connectiohs- 4 and the
initial condition (p1(0), p2(0)) = (0.7, 0.1), the bifur-
cation diagrams fopl(r) and p2(r) versus different
coupling strengths are illustrated irFig. 2 One can
observe that the chaotic behaviorsdf(r) and p2(r)
is suppressed gradually with the increase of the cou-
pling strength wher is small. Fore > 0.097, chaos
reappears and remains no matter what the valeeof
Different initial conditions may alter the bifurcation in
the region of weak coupling. However, when coupling
strength is large enough, the dynamics are indepen-
dent of the choices 0p1(0) and p2(0). They depend
only on the connectivity parametér The results of
real networkg N > 10000 are similar toFig. 2

To characterize the effects of coupling on the in-
dividual behavior more clearly, we analyze the de-
pendence of the maximal Lyapunov exponegtax
[21-23]on the coupling strengtft The maximal Lya-
punov exponentmax represents the exponential rate
at which an arbitrarily small displacement is ampli-
fied, soAmax > O suffices to ensure the dynamic of
coupled maps is chaoti€ig. 3(@) shows the numer-
ical result withk = 4 and(p1(0), p2(0)) = (0.7,0.1)
under different values of. Comparing with the bi-
furcation diagrams irrig. 2, it is easy to observe the
excellent connections: the negativgax corresponds
to the periodic windows in the bifurcation diagrams,
and the positiveimax corresponds to the chaotic re-
gions. Thus, relating to what we have stated above, for
& > 0.097,Amaxis positive and remains no matter what
the value of is.
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Fig. 2. The diagram shows the bifurcation diagrams#o¢:) and Fig. 3. In the conditionk = 4 and (p1(0), p%(0)) = (0.7,0.1).
p2(1) versus different coupling strengttwhenk = 4 and the initial (8) The relationship between the maximal Lyapunov expohgak
condition(p1(0), p2(0)) = (0.7,0.1). of coupled networks and the coupling strengtl{b) The relation-
ship between MSE and the coupling strengtiwvhere the results of
model are denoted by solid circles and the results of real system are

Now, we investigate the synchronization of two net- denoted by empty circles.
works induced by the stochastic coupling. We evaluate

the mean-square error (MSE) betwe#érir) andp?(t)
after controlling. The definition of MSE is we get three possible values of MSE because the sys-

tem possesses three possible stable solutions in this

1 2 parameter region. The periodic iterations of the two

MSE= n Z(pl(’) h pz(t)) : (13) maps may be in phase (corresponding to MS&) or
=1 out of phase (corresponding to the other two values).

We illustrate the results of the coupled density maps in The typical time series are presentedig. 4, where
Fig. 3(b) marked with solid circles. Whesi< 0.050, (a) corresponding to MSE 0, (b) (period-4) corre-
the coupling is too weak to overcome the divergent sponding to the largest MSE and (c) (period-8) cor-
nature of nonlinearity. Thus, the MSE is much larger responding to the value between (a) and (b). Finally,
than zero and no synchronization is achieved.d~er for ¢ > 0.097, MSE become zero and the complete
[0.050 0.078], corresponding to the period-2 in bifur-  synchronization is achieved. The results of real sys-
cations, the two coupled maps possess the same fixedem (V = 10* and transition time steps are larger than
points but different phase. Consequently, the value of 10°) are denoted by empty circles.
MSE can be obtained easily by inserting the values  We also study the situation for a different connec-
of the two fixed points of the bifurcation diagram into tivity k. Choosingt = 16 and the initial condition used
pi(r) and p?(r) in Eq.(13). Whene € [0.078, 0.097], above, we illustrate the bifurcation diagram, the maxi-

n
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Fig. 4. The diagram presents the typical time series of the two maps
whene € [0.078 0.097]. (a) corresponds to MSE 0, (b) (period-4)
corresponds to the largest MSEHig. 3, and (c) (period-8) corre- 0.4
sponds to the value between (a) and (b). w
%)
) =
mal Lyapunov exponent and MSE versus various cou- 02
pling strengths irFig. 5. As what we expect, th&mnax '
connects to the bifurcation diagram well. ot 0.23,
complete synchronization can be observed.
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4. Conclusion and further works &

i i Fig. 5. In the conditionk = 16 and (p1(0), p2(0)) = (0.7, 0.1).
In this Letter, we StUdy the dynamlcs of two cou- (a) The bifurcation diagrams gf(r). The result Ofpz(l) is sim-

pled random Boolean networks. Based on the Boolean ilar with pL(). (b) The relationship betweétnax and the coupling
model and the stochastic coupling techniques, the den-strengthe. (c) The relationship between MSE angdwhere the re-
sity evolution of networks is accurately described by sults of model are denoted by _solid circles and the results of real
two deterministic coupled polynomial maps. We show SYStem are denoted by empty circles.

the excellent agreement between the model and the

real system. Moreover, by using the MSE and the max-  The advantages our work offers are the model pro-
imal Lyapunov exponents, we investigate the synchro- vides predictions of real networks and it allows analyt-
nization phenomena of coupled networks. ical calculations. Actually, the deterministic coupled
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model in Eq.(12) is the typical formula used to de-
scribe the dynamics of globally coupled map lattice
(GML) after the system falls in a two-cluster attrac-
tor [24,25] The stochastic coupling techniques can
be explored further to couple more than two Boolean
networks. Depending on the coupling techniques, the
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[3] F. Fogelman-Soulie, Discrete Appl. Math. 9 (1984) 139.

[4] H. Flyvbjerg, N.J. Kjaer, J. Phys. A 21 (1988) 1695.

[5] U. Bastolla, G. Parisi, Physica D 98 (1996) 1.

[6] U. Bastolla, G. Parisi, Physica D 115 (1998) 203;
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present researches can be extended to locally cou- [8] S. Wolfram, Rev. Mod. Phys. 55 (1983) 601.

pled map lattice, globally coupled map lattice, or even
power-law coupled map lattice. As we know, the sim-
ulations take a lot of time if we conside¥,, coupled
networks consisting oV cells, whereN, and N are
sufficiently large. However, with the aid of the cou-
pled model, it is relatively easy to investigate such
problems. The topics will be investigated in our fur-
ther studies.
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