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Abstract

In this Letter, we investigate the reduced-order synchronization of uncertain chaotic systems. Based upon the parameters
modulation and the adaptive control techniques, we control the response system to be the drive system even though their orders
are different and their parameters are unknown. The techniques are successfully applied to two examples: generalized Lorenz
system (fourth order) and LU system (third order); Rossler hyperchaotic system (fourth order) and Rossler system (third order).
Furthermore, the effect of control modulafors under our discussions.
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1. Introduction

A typical feature of the chaotic system is its extreme sensitivity to initial conditions. Slight errors occurring in
initial states of two identical oscillators will lead to completely different trajectories after enough transient time.
Therefore, how to control chaotic systems has been an important topic in nonlinear science. Generally speak-
ing, chaos suppression and chaos synchronization are the two different concepts about control. Chaos suppression
mainly consists in the stabilization of the chaotic system around periodic orbits or fixed points. The OGY method
is the representative research on chaos suppregdidm 1990, Ott, Grebogi, and Yorke introduced a linear feed-
back method to stabilize unstable periodic orbits in chaotic systems. Because the method does not require prior
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knowledge of the governing equations, it generates widespread interest and has been applied to optical experiment
and communication extensive]g—6].

Methods for synchronizing chaotic systems developed simultaneously with the studies of chaos suppression.
Since the study made by Pecora and Caffdll the investigation of chaotic synchronization has attracted a lot
of attention owing to various potential applications, such as secure communif&8pnneuron systemgl0],
and the study of laser dynamifkl,12] In general, synchronization is understood as the adjustment of the states
of coupled systems. The trajectories of different subsystems become identical in a strong-coupling condition; the
subsystems may be less correlated in a weaker-coupling condition. Depending on different coupling methods and
coupling strengths, several different types of synchronization can be observed: complete synchronization (CS),
phase synchronization (P$)3], lag synchronization (LS)14], anticipation synchronizatiofil5], generalized
synchronization (GS)L6], and so on. They represent the different degrees of correlation in interacting systems.

This Letter addresses the chaotic synchronization based upon nonlinear controllers. The condition, when two
chaotic systems are identical, has been extremely investifigted. However, the synchronization of chaotic sys-
tems with different orders is far less understgp8-21] Because the order of the slave oscillator is lower than that
of the master system, the synchronization is only attained in reduced order. Such a problem is pertinent in the study
of neural networkg22—24] For instance, the output from higher-order neurons always drives the neurons with
lower-order in the subsystem. Similar phenomena can be expected in the human cardiovasculd2Sy2&m
Moreover, studying such problems can help us elucidate the coherent behavior of complex systems; notwithstand-
ing the inherent interest in the problem itself.

In this Letter, we take the drive-response synchronization into consideration. That is, the second system is driven
by the first one but the behavior of the first system is not affected. The two systems are called the master and the
slave system individually. By using the adaptive control and the parameters modulation techpigtssy we
control the slave system to be the master successfully even though their orders are different and their parameters
are unknown. Two examples are demonstrated: generalized Lorenz system (fourth order) and LU system (third
order); Rdssler hyperchaotic system (fourth order) and Rdéssler system (third order). Furthermore, the effect of
control modulatok is under our discussions.

The rest of this Letter is organized as follows. Sectibpresents the strategies of adaptive control and the
parameters identification techniques. Secti8nasnd 4use generalized Lorenz system and LU system, Rossler
hyperchaotic system and Rdssler system to perform synchronization respectively. Moreover, we discuss the effect
of control modulatok. Conclusions and further works are finally drawn in Secon

2. Problem formulation

Consider the following system described by
X =f(x) + F(X)P, 1)

wherex € R™ is the state vector of the system,R™ — R™ is a continuous vector function including nonlinear
terms,F: R” — R"™** andP e R* is the vector of system parameters. Eq.is considered as the master system.

The systems studied in this Letter depend linearly on the parameters, and many well-known chaotic (hyperchaotic)
systems belong to E@l). Similarly, the slave system is given by

y=9y) +Gy)©®+U, (2

wherey € R" is the state vectog: R" — R" is a continuous vector functio : R* — R"*!, and® € R! is the
parameter vector. The purpose of chaos synchronization is to design a contra@llee R"), which is able to
synchronize the state of the master system and the slave system.

When ordem = m, k =1 and the function$ = g, F = G, the slave system is identical to the master system,
and the CS problem has been well studied. When two systems satisfy the conditian(of coursef # g, and
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F £ G), that is, the order of the slave oscillator is lower than that of the master system, the synchronization is only
attained in reduced order. Actually, reduced-order synchronization is the problem of controlling a slave system to
be the projection of the master system. Therefore, we can divide the master system into two parts.

The projection:

Xp =T,(X) +F,(XP, 3)
wherex, € R",f,: R™ — R", andF,: R" — R"*k,
The rest:
Xr = fr (X) + Fr (X) P’ (4)

wherex, € R*, f,: R™ — R*, F,: R™ — R**k and ordem, u satisfyn + u = m. With a suitable controller, the
reduced-order synchronization between two different systems can be achieved, i.e.,

Aim Y =Xpll =0. ®)
Defining the error vectoe=y — X, (e R"), we subtrac(3) from (2) and get

e=gy)+Gy)O®+U—f,(x) —F,(x)P=h(e,x) + G(e,x)® —F,(x\)P+ U, (6)

whereh : R" x R™ — R" is a continuous vector function. In practical situations, the parameters belonging to the
master and the slave system are always unknown. Therefore, by using the adaptive control and the parameters
identification techniquel9,30], the controller can be decided as

U=H(e x) — G(ex)0 +F,xP, 7)
whereH : R" x R™ — R", © andP are the estimated vector of unknown parameters, and the updating laws of the
estimated parameters are given by

6 =GT(y)el =GT e x)el,
{' V) @x) @

o _ T T
P= —Fp(x)e .

Assume a positive Lyapunov functiod = (e’e + @@ + P'P) (whereP=P — P and ® = © — ©).

With the choice of the updating laws above and reasonable control fundtierx), the time rate of change

of V along the solution in Eq(6) will be smaller than zero. In other words, the error vector will ap-
proach to zero as time goes on and the states of the slave system and projected master system are syn-
chronized asymptotically. Noteworthily, the design Hf(e, x) sensitively depends on the considered dy-
namical system. To simplify the question, the details% < 0 will be shown in the following sections

via generalized Lorenz system and LU system, hyperchaotic Rossler system and Rossler system individu-
ally.

3. Synchronization of generalized L orenz system and LU system

In this section, we take generalized Lorenz system and Li system into consideration. Recently, by including
the effects of external rotation, Stenflo showed that low-frequency, short-wavelength acoustic gravity waves can be
described by a system of four coupled nonlinear ordinary differential equdBdhsThe system is similar with
Lorenz system but with a new control parametgand a new variable,. It is called generalized Lorenz system
and given by:

X1 =ai(xz2 — x1) + c1x4,
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X2 =ri1X1 — X1X3 — X2,
X3 =x1x2 — b1x3,
X4 = —Xx1 — aixa, 9)

wherec (¢ > 0) is the rotation number. The nonlinear differential equations that describe LU system are:

y1=a2(y2 — y1),

Y2 = —y1y3+ c2y2,

y3=y1y2 — bays, (10)

whereay, by, co are three positive parameters.
Our purpose is to synchronize Lu system with projection of generalized Lorenz system. Therefore, the master

system is the projection part of E@), and it can be presented in the form of:

X1 0 x2—x1 O 0 xa Crll
<x2> = (—x1x3 —xz) + ( 0 x1 O o) bl . (11)
X3 X1x2 0 0 —x3 O Ci

Similarly, the slave system becomes

y1 0 y—y1 0 0 az uy
v2 | = —yy3 |+ 0 y 0 c2 |+ uz2|. (12)
y3 y1y2 0 0 —y3/ \b2 u3

where vectouy, up, u3)” is the controller and all parameters, r1, b1, c1, az, c2, bo are unknown.
Defining the error state, = y; — x; (i = 1, 2, 3), we subtrac{11)from (12) and get

é1 0
é2 | = —e1ez —e1x3 — x1e3+x2
€3 e1e2 + e1x + x1€2

y—y1 O 0 az x2—x1 O 0 xa jf uq
+< 0 y, O )(Cz)—( 0 x O o) bl +(u2). (13)
0 0 —vy3/ \by 0 0 —x3 O . us
c1
Based upon Ed.7) and with the simplest choice of control functibl(e, x), we get the controller:

uy = —kie1 — (e2 — e1)dz + (x1 — x2)(az — a1) + x4c1,

up = —koea + e1x3 — (1+ ¢2)x2 — €262 + x171,

uz = —kgez — e1xz + ezby + x3(by — b)), (14)
whereks1, k2, k3 are the control modulators, which are positive constantsaand;, by, é1, a2, &2, by are the
estimated value of parameters, which obey the updating laws:

a1 = —(x2 — xp)e,
1=—x1€2,

1= Xx3es,

o S e

(15)

C1 = —Xx4e1,
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Fig. 1. The diagram presents the erregsr), ex(r) andez(r) between generalized Lorenz system and LU systam) = y1(¢) — x1(¢) is
labeled as a solid linep(r) = y2(r) — x2(¢) is labeled as a dotted line aag(r) = y3(r) — x3(¢) is labeled as a dashed line.

and

A 2
a2 = (y2 — y1)e1 = eze1 — e7 + (x2 — x1)eq,

A 2

C2 = y2e2 = e5 + x2€2,

A 2

by = —yze3 = —e5 — x3e3. (16)

Itis necessary to show that the synchronization is realizable. Defining the errors between unknown and estimated
parameters a& = a1 —ai1, 711 =r1 —r1,b1 =b1 —b1,¢1 =C1—c1,d2 = d2 — a2, ¢2 = C2 — ¢2, bo = by — by, we
can choose a Lyapunov function

1 I S TP
V=é(eTe+af+rl+b§+cf+a§+c2+b§). 17)

Taking the time derivation oV along the trajectories of the error dynamical sys{és) leads to

av . . . - L J3 ~ % -~ 2 . ~ 2 ~ %
ar =ej1e1+ epep + e3e3 + aiay +rir1 + biby + ci1c1 + azaz 4 caco + baobo

— k1e? — kped — kaed <O, (18)

whereks, k2, k3 are arbitrarily chosen positive modulators. Siricds a positive definite function antl is a
negative definite function, the error states,ling, ||e(z)|| = 0. In other words, the states of controlled slave system
and the projection part of master system are globally synchronized asymptotically.

RK4 method is used to our simulations with time step being equal to 0.0001. We select the parameters of the
master system ag = 1.0, r; = 26.0, b1 = 0.7, ¢c1 = 1.5 to ensure the chaotic behavior and the parameters of the
slave system ag = 36.0, c» = 20.0, b, = 3.0. The initial values are1(0) = 1, x2(0) =0, x3(0) = -1, x4(0) = 1
andy;(0) = —1, y2(0) = 1, y3(0) = 2. The estimated parameters start frépi0) = 0.2, 71(0) = 10.0, b1 =20,
¢1 = 5.0, 42 = 25.0, ¢ = 30.0, b, = 5.0. We choose control modulatoks = kp = k3 = 1.0. Fig. 1 shows the
errors between two chaotic systems. When the errors approach to zero, the reduced-order synchronization of two
uncertain chaotic systems is realized.
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4. Synchronization of Rdssler hyperchaotic system and Rossler system

Rdéssler hyperchaotic system with two positive Lyapunov exponents has been provided by Ré$stethe
form of ordinary differential equations describing dynamics of some hypothetical chemical reaction
X1 = —x2 — X3,
X2 = x1+aixz + xa,
X3 = b1+ x1x3,
X4 = —c1x3 + dixa, (19)

whereas, b1, c1, d1 are dimensionless parameters. The nonlinear differential equations that describe Rossler system
are:

Yi=—Y2—DY3,
y2 =y1+azy,
y2=b2+ y3(y1 — c2). (20)

Similarly, we regard the mater as the projection part of Réssler hyperchaotic system, which is presented by
X1 —X2 — X3 0 O 4
(562):( x1+ x4 >+<xz 0) <b1>’ (21)
. 1
X3 X1X3 0 1

and the slave system is given by
0 ar U1
0 ) (b2)+<u2>, (22)
—y3/ \c2 u3

Vi —y2—¥3 0
2 | = 1 +( 2
V3 y1y3 0

where(u1, up, u3)! is the controlling vector and parameters b1, az, bo, c» are uncertain.
Defining the error state, = y; — x; (i =1, 2, 3), we subtrac{21) from (22) and get

é1 —e2 — e3 0O 0 O ar U1 0 O B
(éz):( e1— Xxq )—I—(yz 0 0 ) <b2)+(u2>—<x2 0) <b1>. (23)
é3 e1e3 + e1x3 + x1e3 0 1 —y3 2 us3 0 1 L

The purpose of control is to decide a controller and the update law of estimated parameters so that the states of
master system and slave system are synchronized asymptotically. Based uporaid.with the suitable choice
of control functionH (e, x), we can get the controller:

= O O

uy = —kie1 — egxz — €3,
up = —koep + x4 — e2ap + x2(a1 — az),
uz = —kzez +e3(c2 — x1) +e1+ (l;]_ — l;z) + x3C2. (24)

Simultaneously, the updating laws of the estimated parameters are given by

Q>

1= —x2e2,

by = —es, (25)
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Fig. 2. The diagram presents the synchronization ewpfs, e>(r) andes(¢) of the unidirectional coupled Réssler hyperchaotic system and
Rossler systemnes (7) is labeled as a solid linep(z) is labeled as a dotted line aag(z) is labeled as a dashed line.

and

a2 = (e2+ x2)ea,
by = es,
¢ =—(e3+x3)ea. (26)

Using Lyapunov stability theory, one can show that synchronization is attainable for all initial conditions. Let
the errors between unknown and estimated parameteis aré1 — a1, b1 = b1 — b1, 2 = az — az, by = by — b,
¢2 = ¢2 — c2, and then we can choose the positive Lyapunov function as:

1 2, 72, a2 2
V:E(eTe+af+b§+a§+b§+c§). (27)

Similarly, taking the time derivation o¥ along the trajectories in the error dynamical sys{@3), it is easy to
show that:

i—‘; = €161 + epép + e3é3 + a1a1 + bib1 + Godp + baby + Ga¢2 = —k1e? — kpe5 — ke3 < 0, (28)
whereky, ko, k3 are positive modulators. Sindeis a negative definite function, the error states ling, ||le(t)|| = 0.
In another word, this choice will lead the errors to converge to zero as time passes, and hence the reduced-order
synchronization is achieved.

The parameters of two systems are selected as the typical valee.25, b1 = 3.00, ¢1 = 0.50, d; = 0.05,
ap =0.20,b2 = 0.20, andco = 5.70. The initial conditions are; (0) = —20, x2(0) = 0, x3(0) = 0, x4(0) = 15 and
y1(0) = —1, y2(0) = 1, y3(0) = 2. The estimated parameters start fron0) = 1.0, b1 = 5.0, 42 = 1.0, b, = 2.0,
¢2 =5.0. We choose control modulatdts = k2 = k3 = 2.0 and time ste@r = 0.001. The results of reduced-order
synchronization are presentedrig. 2

Moreover, the reduced-order synchronization can be improved by increasing the three positive maduylators
k2, and k3. To quantify the synchronization, we evaluate mean-square error (MSE) between the slave system
(y1, y2, y3) and the master syste(y, x», x3) after controlling. The MSE is defined as

T

MSE = %/[X(l) —y(t)]zdt. (29)
0
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Fig. 3. The diagram presents the values gMB8E) versus the modulatoks wherek vary from 1 to 200 with step 1. (a) illustrates thé MSE)
of synchronized generalized Lorenz system and Lu system. (b) demonstrateéMB&)rof synchronized Réssler hyperchaotic system and
Rossler system.

Consider the error signal in the first example, the value of MSE is calculated with various modulators. To simplify
the analysis, we séh = k» = k3 =k, and changé from 1 to 200 in steps of 1. The transitional signals are elim-
inated, andr is set as large as possible. Agy. 3a) presents, MSE gets smaller with the increasg,afhich

implies that the reduced-order synchronization will be excellent if the modulatare sufficiently large. Addi-

tionally, the values of MSE between Rdssler hyperchaotic and Réssler systems demonstrate the similar property.
Fig. 3b) illustrates the results.

5. Conclusion

Based on Lyapunov stability theory, we propose the adaptive control and parameters modulation techniques to
synchronize two chaotic systems with different order though their parameters are uncertain. The simulation results
show that the sates of generalized Lorenz system and Lu system; hyperchaotic Rdssler system and Rdssler system
are synchronized asymptotically. With the increase of modulatpthe reduced-order synchronization can be
improved further.

Noteworthily, in our examples, the estimation value of parameters will not be identical to the real parameters.
This is because the error systems and the parameter updating laws may possess multi-equilibrii@®pditots
to find the unique solution to the error systems and get the correct parameters are our further works.
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