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Abstract

In this Letter, we study the chaos synchronization of two stochastically coupled random Boolean networks (RBNs). Instead of using the “site-
by-site and all-to-all” coupling, the coupling mechanism we consider here is that: the nth cell in a network is linked by an arbitrarily chosen cell
in the other network with probability ρ, and it possesses no links with probability 1 −ρ. The mechanism is useful to investigate the coevolution of
biological species via horizontal genetic exchange. We show that the density evolution of networks can be described by two deterministic coupled
polynomial maps. The complete synchronization occurs when the coupling parameter exceeds a critical value. Moreover, the reverse bifurcations
in inhomogeneous condition are observed and under our discussion.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cellular automata are discrete dynamical systems which can
exhibit complex special-temporal behaviors [1–3]. Besides the
convenient and easy calculating procedure, the models give us
good explanations of the microscopic mechanisms that lead to
the macroscopic behavior of the systems. They provide simpli-
fied models for a wide variety of physical systems [4,5], such
as magnetization in solids [6], reaction–diffusion processes [7],
fluid dynamics for complex situations [8], growth phenomena
[9], traffic flow models [10,11], and so on. Though a cellular
automaton illustrates a relatively simple sketch of a real sys-
tem, it still can grasp the typical and significant characteristics
of the system it models. Therefore, it is important to investi-
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gate the dynamics of CA for realization and prediction in real
systems.

Based upon the different evolution patterns, Wolfram sepa-
rated all the rules of elementary cellular automata (ECA) into
four classes: homogeneous state (class I), separated simple sta-
ble or periodic structures (class II), chaotic pattern (class III)
and complex localized structures (class IV) [1–3]. The state of a
cell is determined by the cell itself and its nearest two cells. The
evolution rule of ECA can be described by the Boolean func-
tion: cn(t + 1) = fn[cn−1(t), cn(t), cn+1(t)], where n is the site
index and the up-date rule f is identical for each cell. Because
ECA have a spatial structure, they can be applied to investigate
one-dimensional crystal growth and fluid flow. However, when
spatial locations are less meaningful, such as spin models with
disordered long-range interaction, the problem of cell differen-
tiation, and biological evolution, the Kauffman networks (KNs)
are more suitable to model the systems than ECA [12,13]. This
is because KNs are not arranged in any spatial structure and
the up-date rule can vary from one cell to another. Actually,
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ECA can be regarded as a special case of KNs with connec-
tions k = 3, but the choice of an evolution rule and connections
is deterministic. The dynamics of KN have been widely studied,
and the details can be reviewed in Refs. [14–16].

There is an intermediate automaton between ECA and KN,
which is called random Boolean network (RBN) or disordered
cellular automaton (DCA). The connections of the RBNs are
still randomly chosen but the evolution rules are identical for
all cells (nodes) [17]. Unlike ECA and KNs, the dynamics of
RBNs are still far less understood. Recently, Andrecut and Ali
show that the RBNs obeying the generalized rule 126 for ECA
can be exactly described by a density map [18]. The authors
consider a simple Boolean network with N cells in which each
cell is connected to k random chosen cells and the parameter
k is known as the connectivity of the network. The value of
k is fixed, and the state of each cell is influenced only by the
cell itself and the k connections. The density map, which rep-
resents the probability of finding a cell in state 1 at time t ,
exhibits extremely abundant chaotic dynamics. Matache and
Heidel extended the ideas to a more general condition: the con-
nections k of one cell are different from another in the identical
network [19]. Moreover, the authors consider that the model
allows an asynchronous update rule for the N cells (ARBNs
and GARBNs) [20]. These works are important in modeling
real systems composed of multiple interacting components;
notwithstanding the inherent interests in the problems them-
selves.

In this Letter, we study the coevolution dynamics, espe-
cially the chaos synchronization, in two coupled RBNs. Since
the study from Pecora and Carroll [21], the investigation of
synchronization has attracted a lot of attentions [22–25]. Al-
though globally coupled chaotic oscillators with lower dimen-
sions have been extensively studied, synchronization of spa-
tially extended systems is still unexplored, particularly KNs and
RBNs. One of the principal causes is their discrete characteris-
tic of states which results in the uselessness of deterministic
coupling. To solve the problem, Morelli and Zanette introduced
a significant coupling method [26,27]. Because the coupling
method is characterized by a probability g, it is called stochas-
tic coupling mechanism. The mechanism has been applied to
couple ECA, KNs, and RBNs successfully [26–28]. However,
in addition to several special cases [29], the “site-by-site and
all-to-all” coupling (that is, the nth cell in a network is con-
nected restrictively to the nth one in the other network) is rarely
seen in real systems. Here, we modify the coupling method to
couple two RBNs: the nth cell in a network is linked by an arbi-
trarily chosen one in the other network with probability ρ, and
it possesses no links from other cells with probability 1 − ρ.
The mechanism is useful to investigate the panmictic popu-
lation structures which results from “horizontal” exchange of
genetic material between biological species [30]. It would also
be helpful to investigate the dynamics of coupled gene networks
[31]. Though the networks are stochastically coupled, our re-
sults show that two deterministic coupled polynomial maps can
accurately describe their density evolution after statistic calcu-
lations. This outcome is important because the model provides
good predictions of original networks and allows analytical cal-
culations. Based upon the numerical simulations, we will rep-
resent the excellent match between the model and the original
networks.

The inhomogeneous condition is also under our discussion.
The inhomogeneity appears here in the form of different val-
ues of connectivity in different networks. Such inhomogeneous
concept has been extended to study spinning control of spa-
tiotemporal chaos [32], spatiotemporal intermittency dynamics
[33], and phase synchronization (PS) phenomena [34] in cou-
pled maps lattice. In this Letter, we observe the interesting
reverse bifurcations via period-halving in inhomogeneous con-
dition [19]. The mechanism is analyzed further in the text.

This Letter is organized as follows. In Section 2, we intro-
duce a model of two coupled random Boolean networks and
provide the deterministic coupled maps to model them. Numer-
ical results show the excellent agreement between the original
system and the model. In Section 3, we investigate the syn-
chronization phenomena of coupled networks and analyze it by
using mean-square error (MSE) and Lyapunov exponents. In
Section 4, the reverse bifurcations in inhomogeneous condition
are under our analysis. Finally, a brief conclusion and further
works are given.

2. The deterministic coupled model

Let us consider two discrete networks with N cells individu-
ally. Each cell ci

n, where i = 1,2 indicates network 1 or network
2 and n = 1,2, . . . ,N , is described by a Boolean variable 1 or 0.
Suppose that two operators R̂ and Ŝ govern the dynamics of
coupled networks:

(1)c1,2(t + 1) = Ŝ ◦ R̂
(
c1,2(t)

)
,

where all cells update their states synchronously. The operator
R̂ is the evolution rule of individual network. It is applied to
both networks as they are not coupled. The coupling scheme
we consider here is that: the cell c1

n (c2
n) is linked by an arbi-

trarily chosen one c2
m (c1

m) with probability ρ (0 � ρ � 1), and
it possesses no links form other cells with probability 1 − ρ.
The linkages are redetermined at each time step. Operator Ŝ is
the process of information exchange between networks, which
compare and alter the states of linked cells in each network.
Taking the network 1 into consideration, if c1

n possesses no
links form other cells, c1

n will stay invariant after being oper-
ated by Ŝ. If cell c1

n is linked from c2
m and c1

n(t) = c2
m(t), c1

n

will not change. If cell c1
n is linked from c2

m and c1
n(t) �= c2

m(t),
the coupling will not act and c1

n will not change with the prob-
ability 1 − g (0 � g � 1) or the state c1

n will be c2
m with the

probability g. Thus, the stochastic coupling scheme can be ex-
pressed as

(2)Ŝn

(
c1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1
n if c1

n possesses no links,

c1
n if c1

n is linked from c2
m and c1

n = c2
m,

c1
n with probability 1 − g, if c1

n �= c2
m,

c2
m with probability g, if c1

n �= c2
m.

The coupling operator Ŝ is applied to network 2 simultane-
ously. Noteworthy, the links are not bidirectional coupling. For
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example, if the cell c1
n is linked by c2

m, c2
m may be linked by

another arbitrary one in network 1, or even possess no links.
Different operator R̂ models different physical, biological,

and artificial networks [4–16,31,35]. For two reasons, we take
RBNs into consideration. First, the RBNs obeying the gener-
alized totalistic rules for ECA can be described by a density
map p(t ′) = f (p(t), k), where p(t ′) represents the probability
of finding a cell in state 1 after R̂. For example, the map obey-
ing generalized rule 126 is [18]

(3)p(t ′) = 1 − p(t)k+1 − [
1 − p(t)

]k+1
,

where k � 1 is the number of connections of each cell. Besides
being easy to deal with, the iteration formulation exhibits ex-
tremely bounteous chaotic behaviors. Actually, it is possible to
extend the idea to other systems, such as the gene network [31]
or the biological immune system [35]. Second, being similar
with Conway’s game of life, these totalistic RBNs have a nat-
ural interpretation in terms of the cell growth and ecology. In
other words, they provide the simplified model to demonstrate
the complexity in real systems.

Now the coupled model can be formulated progressively. Let
N

1,2
1 (t) be the number of cell in state 1 and N

1,2
0 (t) be the num-

ber of cell in state 0 for two networks at time t . Obviously, they
obey the conservation conditions

(4)N1
1 (t) + N1

0 (t) = N2
1 (t) + N2

0 (t) = N

for all t . The first sub-step is to apply the free evolution operator
to both networks. After being acted by R̂, N

1,2
1 turn out to be

(5)N
1,2
1 (t ′) = Nf 1,2(p1,2(t), k1,2),

and evidently

(6)N
1,2
0 (t ′) = N

[
1 − f 1,2(p1,2(t), k1,2)].

In the second sub-step, the stochastic coupling operator
Ŝ is applied. To simplify the description, we pay our atten-
tion to the network 1 and use the notation f 1,2 in place of
f 1,2(p1,2(t), k1,2). For network 1, after being operated by Ŝn

the number of cells staying in state 1 is

N1
1→1 = N(1 − ρ)f 1 + Nρf 1f 2

(7)+ Nρf 1(1 − f 2)(1 − g).

The first term in the right side of Eq. (6) corresponds to the
situation that the cells possess no links from the network 2. The
second term indicates the situation (c1

n, c
2
m) = (1,1). The last

term indicates (c1
n, c

2
m) = (1,0) but the cells stay invariant with

probability 1 − g. Similarly, the number of cells changing their
states from 1 to 0 is

(8)N1
1→0 = Nρf 1(1 − f 2)g,

where g is the probability that the cells become c2
m. Using a

similar argument as above, we can get the following results:

N1
0→0 = N(1 − ρ)

(
1 − f 1) + Nρ

(
1 − f 1)(1 − f 2)

(9)+ Nρ
(
1 − f 1)f 2(1 − g),
and

(10)N1
0→1 = Nρ

(
1 − f 1)f 2g.

One can check easily that N1
1→1 +N1

1→0 +N1
0→0 +N1

0→1 = N .
We can construct the coupled model by these equations. The

probability of finding a cell in state 1 at time t + 1 is given by

(11)p1(t + 1) = N1
1→1 + N1

0→1

N
= (1 − ρg)f 1 + ρgf 2.

Repeating the procedure above, the density function for net-
work 2 will become

(12)p2(t + 1) = (1 − ρg)f 2 + ρgf 1.

We call the multiplied term ρg the coupling strength ε. Thus,
the final result is

(13)

{
p1(t + 1) = (1 − ε)f 1(p1(t), k1) + εf 2(p2(t), k2),

p2(t + 1) = (1 − ε)f 2(p2(t), k2) + εf 1(p1(t), k1).

When N → ∞, the two deterministic coupled polynomial
maps can describe the density evolution of coupled RBNs re-
gardless of the discrete nature of networks and the stochastic
coupling methods.

In this Letter, we consider the RBNs which obey generalized
Rule 22 for ECA. Like rule 126, rule 22 is another legal, totalis-
tic, and complex rule among the 256 rules. Therefore, it can be
simplified by a chaotic density map and has a natural interpre-
tation in terms of the cell growth and ecological evolution [19].
Actually, the idea can also be applied to other totalistic rules.

By using the Boolean function, rule 22 becomes f [0,0,1] =
f [0,1,0] = f [1,0,0] = 1, and f = 0 for the five remaining
possible situations [2]. The density function is

(14)p(t + 1) = f
(
p(t), k

) = (1 + k)p(t)
[
1 − p(t)

]k
,

and the details are shown in Appendix A. Fig. 1(a) illustrates
the bifurcation diagram when k ∈ R. With the increase of k, the
density map undergoes the route to chaos via period-doubling
bifurcations. Fig. 1(b) shows the dependence of the Lyapunov
exponent λ upon the chaotic parameter k. In terms of nonlinear
dynamics, the Lyapunov exponent represents the convergence
(divergence) properties of nearby trajectories. Divergence of
trajectories along some direction in the phase space corresponds
to a positive Lyapunov exponent, so λ > 0 suffices to ensure
that the dynamics of the map is chaotic. The results correspond
well with Fig. 1(a).

It is necessary to provide some numerical experiments to
see if the model matches the original system. The graphs in
Fig. 2 present the simulations of the polynomial model (mesh
plot) and the actual coupled RBNs (points). Let P(t) ≡ p1(t)+
p2(t), we illustrate first two iterations P(t + 1), P(t + 2) ver-
sus p1(t), p2(t) individually for the case N = 104, k1 = k2 =
k = 12, ρ = 0.6, and g = 0.5 (ε = ρg = 0.3). Obviously, there
is an excellent agreement between the coupled maps and the
original system. If we increase the cell number N , the agree-
ment will be improved correspondingly. For other parameter
combinations, including the inhomogeneous situation k1 �= k2,
the model is still a very good approximation for the original
system. The statement is examined by simulations for various
parameters.
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Fig. 1. Simulation results of the RBN based on generalized rule 22. (a) Illus-
trates the bifurcation diagram with k ∈ R, and (b) shows the dependence of the
Lyapunov exponent λ on the parameter k.

3. Chaos synchronization

The investigation of chaos synchronization has been an im-
portant topic in nonlinear science owing to its various potential
applications, such as secure communication [22], neuron sys-
tems [23], and the study of laser dynamics [24]. Synchroniza-
tion can be regarded as the adjustment of the states of systems
via the coupling. Depending on different coupling methods and
coupling strengths, several different types of synchronization
can be observed: complete synchronization (CS), phase syn-
chronization (PS) [36], lag synchronization (LS) [37], antici-
pation synchronization [38], generalized synchronization (GS)
[39] . . . , and so on. They represent the different degrees of cor-
relation in interacting systems.

In this Letter, we study the chaos synchronization and inter-
active dynamics in coupled RBNs mentioned above. Choosing
N = 5 × 104, k1 = k2 = k = 12, ρ = 0.9, and the initial con-
dition (p1(0),p2(0)) = (0.1,0.4), we plot the error evolution
e(t) ≡ |p1(t)−p2(t)| versus time for various exchanging prob-
ability g. Complete synchronization of two networks requires a
fulfillment of the expression

(15)lim
t→∞ e(t) = lim

t→∞
∣∣p1(t) − p2(t)

∣∣ = 0.

Fig. 3(a) presents the results when g = 0 (absence of cou-
pling), two networks evolve in the asymptotically stable chaotic
attractors individually and no synchronization is achieved.
When g = 0.1, as shown in Fig. 3(b), the errors fluctuate around
e = 0.28 with the pass of time. In the condition g = 0.2, the
coupling is sufficient to overcome the divergent nature of non-
linearity, and the error converges toward zero. When g gets
larger, the fluctuations decrease evidently, as shown in Fig. 3(d).
Fig. 2. The diagrams present the numerical results of the model (mesh plot) and
the real coupled networks (points) with N = 104, k1 = k2 = k = 12, ρ = 0.6,
and g = 0.5 (ε = ρg = 0.3). The graphs (a) and (b) illustrate the first two itera-
tions P(t + 1), P(t + 2) versus p1(t) and p2(t) individually.

To characterize the effects of coupling strength more clearly,
we evaluate the mean-square error (MSE) between p1(t) and
p2(t) with ρ = 0.9. The definition of MSE is that: MSE =
1
n

∑n
t=1 e(t)2. We show the relationships between MSE and

coupling strength ε = ρg in Fig. 4(a) marked with empty cir-
cles. The complete synchronization occurs when the coupling
parameter exceeds a critical value. For ε � 0.18,MSE ap-
proaches to zero and the CS is achieved. With ε getting larger,
the synchronization is improved correspondingly. The results
of density model, which tally well with the original system, are
denoted by solid circles in the diagram simultaneously.

The dynamics of coupled RBNs can be easily realized by
means of the coupled density maps. Choosing the identical pa-
rameters and initial conditions used above, Fig. 4(b) graphs
the bifurcation diagrams for p1(t) versus different coupling
strength. The bifurcations for p2(t) are identical to p1(t) ex-
cept ε is extremely small (no represented). We can observe that
the chaotic behaviors of p1(t) is suppressed gradually with the
increase of the coupling strength when ε � 0.06. In the region
ε ∈ [0.06,0.17], two systems are suppressed to be period-2.
Even though the two coupled maps possess the same fixed



Y.-C. Hung et al. / Physics Letters A 356 (2006) 35–43 39
Fig. 3. The diagrams show the error evolution e(t) ≡ |p1(t) − p2(t)| versus time for various exchanging probability g: (a) g = 0.0, (b) g = 0.1, (c) g = 0.2, and
(d) g = 0.4.
points, they are in different phase. The values of MSE are then
obtained easily via the values of the two fixed points in the bi-
furcation diagram. This is the reason that errors keep around
e = 0.28 in Fig. 3(b). For ε > 0.17, chaos reappears and re-
mains no matter what the value of ε is. The fact ensures that the
synchronization phenomena in coupled RBNs are chaos syn-
chronization. Finally, we analyze the dependence of the maxi-
mal Lyapunov exponent λmax [40–42] on the coupling strength
ε in Fig. 4(c). Comparing with the bifurcation diagrams, we can
observe the excellent corresponding between them.

Based upon the concept of the diffusive synchronization sta-
bility matrix (DSSM) [43], we can determine the synchroniza-
tion threshold analytically. The necessary condition for CS is
λ(k) + ln(1 − 2ε) < 0, where λ(k) is the Lyapunov exponent
of the uncoupled map. When k = 12, the coupling strengths
in synchronization region (numerical results) satisfy the condi-
tion exactly (λ(12) ∼= 0.37). Besides, we also investigate other
conditions with different connectivity k. In Fig. 5, we show
the MSE versus parameter pairs (k, ε), where MSE = 0 corre-
sponds to the complete synchronization. Relying on the choice
of k, CS will be achieved when coupling strength exceeds a
corresponding critical value of coupling strength, which can be
examined by DSSM.

Because the process of information exchange between net-
works may happen before individual evolution, it is possible to
exchange the order of two operators in the update law. That is,
Eq. (1) becomes

(16)c1,2(t + 1) = R̂ ◦ Ŝ
(
c1,2(t)

)
.

Correspondingly, the coupled polynomial model can be refor-
mulated as

(17)

{
p1(t + 1) = f 1((1 − ε)p1(t) + εp2(t), k1),

p2(t + 1) = f 2((1 − ε)p2(t) + εp1(t), k2).
Though the dynamics of Eq. (17) differ from the previ-
ous coupled model, the chaos synchronization still can be ob-
served. With the choice of parameters k1 = k2 = k = 12 and
(p1(0),p2(0)) = (0.1,0.4), the MSE approaches to zero after
ε � 0.16. In such regions, the individual network is chaotic
and the largest Lyapunov exponent λmax is larger than zero, as
shown in Fig. 6.

4. Inhomogeneous condition

The systems consisting of identical elements are idealized
and specialized cases because the subsystems in the realistic
system are never the same. Therefore, the study of inhomoge-
neous condition has attracted a lot of attention [32–34]. In the
recent days, Matache and Heidel consider a network consisting
of several collections. The numbers of connections of nodes are
identical in a collection, but they differ from each other when
belonging to different collections. An interesting phenomenon
is first observed in such inhomogeneous condition: the route
to chaos is due to a cascade of period-doubling bifurcations
which turn into period-halving bifurcations for certain para-
meter pairs [19]. A corresponding question thus arises: is the
reverse process preserved in other systems, for example, the in-
homogeneous coupled networks? In this Letter, the question is
under our exploration.

The inhomogeneity here appears in the form of different
connectivity values in each network. In other words, k1 �= k2 in
Eq. (13). To simplify the problem, we choose coupling strength
ε = 0.5 which leads to p1(t) = p2(t) ≡ p(t) after the first
iteration. We plot the bifurcations of p(t) with integer connec-
tivity k1 = 3,6,9,12,15 and the freely increasing k2 in Fig. 7.
The initial intensity values (p1(0),p2(0)) are all identical for
each k1. We can observe that the dynamics of system get more
complex with the increase of k1 and exhibit chaos after k1 � 9.
For k1 = 12 and k1 = 15, the period-doubling bifurcation start
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Fig. 4. In the condition k1 = k2 = k = 12, ρ = 0.9, and
(p1(0),p2(0)) = (0.1,0.4). (a) The relationship between MSE and ε,
where the results of the original system are denoted by empty circles and the
results of model are denoted by solid circles. (b) The bifurcation diagrams of
p1(t). The result of p2(t) is similar with p1(t). (c) The relationship between
λmax and the coupling strength ε.

Fig. 5. The diagram shows the MSE versus various parameter pairs (k, ε), where
MSE = 0 corresponds to the complete synchronization.

Fig. 6. In Eq. (17) with the choice of k1 = k2 = k = 12 and
(p1(0),p2(0)) = (0.1,0.4), (a) shows the relationship between MSE and ε,
where the results of original system are denoted by empty circles and the re-
sults of model are denoted by solid circles. (b) Shows the relationship between
λmax and the coupling strength ε.

Fig. 7. The bifurcation diagrams of p(t) as a function of k1 and k2. For k1 = 12
and k1 = 15, the period-doubling bifurcation start to reverse when k2 exceed
the critical point, and converge to period-2 finally.

to reverse when k2 exceed the critical point, and converge to
period-2 finally. To represent the dynamics more clearly, we
illustrate the bifurcation diagram by holding k1 = 20 and in-
creasing k2 in Fig. 8(a). The inset is a zoom-in view over a
small range of k2. Fig. 8(a) demonstrates that the system under-
goes a cascade of period-doubling bifurcations to chaos, and
reverses to periodical orbit via period-halving process. Similar
reverse bifurcations are obtained for different choices of ε but
with larger critical reversing point.
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Fig. 8. The bifurcation diagrams of p(t) for (a) k1 = 20 and (b) k1 = 30. The insets are zoom-in view over a small range of k2.
For larger values of k1, the situation become more compli-
cated in our inhomogeneous model. Fig. 8(b) illustrates the bi-
furcation diagram in the case of k1 = 30. In the region 1 � k2 �
398, the system undergoes the route to chaos and then starts
to reverse immediately. However, after k2 > 398 the system
goes through another sequence of period-doubling bifurcations
and exhibits chaotic behavior once again. Similar results can be
noted effortlessly for k1 � 25.

To understand the mechanism of reverse bifurcation stated
above, we take the limit k2 → ∞ and reformulate Eq. (13) as

(18)

{
p1(t + 1) = (1 − ε)f 1(p1(t), k1),

p2(t + 1) = εf 1(p1(t), k1).

Choosing coupling strength ε = 0.5, the equations then reduce
to be

(19)p1(t) = p2(t) = p(t) = 1

2

(
1 + k1)p(t)

[
1 − p(t)

]k1
,

which characters the dynamical behaviors of inhomogeneous
model for large k2. The bifurcation diagram and Lyapunov ex-
ponent λ of reduced map (19) are represented in Fig. 9. In
the region 0 � k � 11.5, the attractor is a stable fixed point
(period-1) and for 11.5 < k � 21 is a stable period-2 cycle. This
is the reason that the system converge to periodic orbit when
k2 exceed a critical point in Figs. 7 and 8(a). For k � 25, the
reduced map becomes chaotic and thus results in the reappear-
ance of period-doubling bifurcations, as illustrated in Fig. 8(b).
Noteworthy, when k1 locates at the periodic window in Fig. 9,
the system requires much larger value of k2 to reach the final
periodic state (not represented). Owing to the instability, the
process of period-halving is relatively hard to be observed.

It is possible to investigate the inhomogeneity in the form of
entirely different evolution rule [34], for example, one network
obeys rule 22 and the other obeys rule 126. The results will
be presented in our further works where we will generalize the
coupling mechanism to couple more than two RBNs.

5. Conclusions

We study the dynamics of two stochastically coupled ran-
dom Boolean networks (RBNs) in this Letter. Due to the “site-
by-site and all to all” coupling is relatively uncommon in real
systems, we modify the coupling scheme to model co-evolution
of biological species via horizontal genetic exchange. We show
that the density evolution of networks can be described by
two deterministic coupled polynomial maps, even thought the
systems are stochastically coupled. Our model provides good
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Fig. 9. Simulation results of the reduced map in Eq. (19). (a) Shows the bifurca-
tion diagram, and (b) shows the dependence of the maximal Lyapunov exponent
λ on the parameter k.

predictions and analytical calculations of the original networks.
Moreover, we study the inhomogeneous condition in the form
of different values of connectivity in each network. The reverse
bifurcations via period-halving process are under our analysis
and discussion.
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Appendix A. Derivation of density map for rule 22

In this appendix, we formulate the density map to describe
the dynamical behavior of a generalized RBN based on rule 22.

Consider a RBN with N cells (N → ∞). Each cell cn, where
n = 1,2, . . . ,N , is described by two values 1 or 0. The connec-
tions of a cell cn could be assigned randomly from its belonged
network, and the number of connections is denoted by k fixed
for all cells during evolution. The generalized evolution rule 22
is as follows:

(A.1)cn(t + 1) =
{

1, [cn(t) + Snk(t)] = 1,

0, otherwise,
where Snk = ∑k
j=1 cnj (t) is the sum of the k random connec-

tions of cell cn.
The density of the RBN at time t is given by p(t) =

N−1 ∑N
n=1 cn(t). Of course, the density also satisfies with

p(t) = N1/(N0 + N1), where N1 is the number of cells in state
1 and N0 is the number of cells in state 0 at time t . After be-
ing operated by evolution rule, the number of cells that are 1 at
time t and remain 1 at time t + 1 is given by

(A.2)N1→1(t) = N1
[
1 − p(t)

]k
.

Similarly, we can get the number of cells that change their states
from 1 to 0:

(A.3)N1→0(t) = N1
{
1 − [

1 − p(t)
]k}

.

The number of cells that change their states from 0 to 1:

N0→1(t) = N0

(
k

1

)
p(t)

[
1 − p(t)

]k−1

(A.4)= N0kp(t)
[
1 − p(t)

]k−1
,

and the number of cells that keep their states 0:

(A.5)N0→0(t) = N0
{
1 − kp(t)

[
1 − p(t)

]k−1}
.

Inserting the results from Eqs. (2) and (4) into p(t + 1), then
we can get Eq. (14).
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