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Eigenvalue problem approach to the blind source separation:
Optimization with a reference signal
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The eigenvalue problem approach to the blind source sepaifatidiiolgedey and H. G. Schuster, Phys.
Rev. Lett. 72, 3634(1994)] is reinvestigated. The essential assumption is that the source signals should be
statistically independent for the eigenvalue method to be applicable. When the source signals are correlated,
unfortunately, this elegant approach faces a serious problem of optimization. We propose that by employing a
reference signal in the separation procedure, the reconstructed signals that have an optimum minimum mis-
match to the original sources can be obtained. The role and the criterion in choosing the reference signal will
be extensively illustrated. Furthermore, the influences of nonzero correlation between different source signals,
finite data length, and channel noises on signal separation will also be fully clarified.
[S1063-651%98)14110-1

PACS numbes): 87.40+w, 05.40+j, 05.45+b, 85.25.Dq

I. INTRODUCTION though the symmetric correlation matri;(t)1;(t))=Mj;
alone cannot solve the problem, the time-delayed correlation
Blind source separation has been an intriguing issue for anatrix (1;(t)I;(t+ 7))=M;; can provide the additional con-
long time, partially due to its similarity to the human expe- ditions for resolving the problem. In a more explicit form,
rience, e.g., the cocktail party effeft]. It also has great
appllcat_lon to various fields. The simplest case of the source M, :2 CiCiN, M; =E CiCiN, 1)
separation problem occurs between two speakers whenever [ [
the mixture of their voices reaches two microphones and one —
wants to separate both sources such that each output chanié1ereCi;, i, and\;=K;(7) are unknown. With Eq(1),
registers only one voic§2]. Further examples, involving one can diagonalizkl andM simultaneously, and this gives
many sources and receivers, are the separation of odors inGt *M(CT) "*=A andC *M(C") '=A whereA;;=\;§j;
mixture by an array of sensors and the parsing of the enviand A;;=\;8;; . Eventually, Eq.(1) leads to an eigenvalue
ronment into different objects by our visual systggj. Be-  problem,
cause of the complexity inherent in these problems, blind — —
source separation has stood as an unsolved problem in his- (MM™HC=C(AA™Y). 2
tory. The difficulty exhibited in such source separation could
be described as follows. Assume that thererasgurce sig-
nals,a;(t) (i=1,2,...n), and that they satisfy the correlation
relation (a;(t)a;(t'))=K;(|t—t'[)&;, which means that
they arestatistically independentMeanwhile, assume that
there aren detectors that can providedetected signalk (t)
(i=1,...n). Thus the detected signals can be related to th
source signals byi(t)zE?:lCijaj(t), where C;; are the

Usually, MM~ is not symmetric. Becausg is formed by

the eigenvectors, the diagonal element€afan be normal-

ized to unity. Note that for simplicity, the signal is with zero
mean, i.e.{a;(t))=0. This zero-mean assumption will not
affect the result because the essential message is included in
éhe time-varying part. Equatiof2) can be solved by the
Standard techniques of numerical linear algebra with high

mixing coefficients. Because the matiixis generally not computational -efficiency. As an impressive example,
g : 9 Wy Molgedey and Schuster successfully separated the mixed
symmetric and the source strengths are not available, th

; X Sounds from two independently crying babjéq].
total unknown number of var|ab_lesnﬁ{n+1). On the other . The blind source separation based on the MS scheme is
hand, there are only detected signals available. The classi-

cal problem ishow one determines the coefficients &nd rather novel, but there remains one critical parameter, i.e.,
P o] the time delayr, that must be clarified. It has been suggested

the source strengths; = K;(0) from a measurement of(l). ¢ this problem is solvable simply by choosing the time
Unlike other methods using neural network appropth delay that satisfiedk. (VK. (7)= A h % Ak = K- (7K. (0

6], cumulants, and polyspectrf7—10, Molgedey and elay that satisfied<;(0)K;(7) =\iAj# M) =K;(7)K;(0)

Schuster(MS) used time-delayed correlation to separate afor all i+ [11]. But this condition implies an already suc-

mixture of independent signafd1]. Since there is no cost cessful separation, and its validity is based on three condi-

function or adaptation rule that may cause conceptual diffi—tions_ (separatio_n conditior)si.e_.,_(ll) M is not a singular
culty and ambiguity, this approach is physically straightfor-matrix, (2) the eigenvalues d#iM ~* are nondegenerate, and
ward and appealing. Molgedey and Schuster show that al3) the eigenvalues oMM ! should be real. As soon as
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the eigenvectors are deduced, E2). implies that after the (M l\W*)CSzCS(/N\). (5)

separation, the mismatches for anghould be the same and

all are exactly equal to zero. This zero-mismatch property iy the eigenvalue\ and eigenmatrixCS the reconstructed

remarkable since it means that the classical blind SOUrcgytputs A’, a column vector formed b/, follow A’

separation has been_perfectly solved. But, as will be s_howg CS!I. Sincel =CA, the connection between the re-

_below, if (_|) _the stat!stlcal independence (_)f the source signalgonstructed and the source signals is

is not satisfied andii) the data length available is finite, then

this zero-mismatch property disappears and the MS method A'=S71A, (6)

may not be applicable. Hence, in practice, numerdsi$ead

to separation, but whichr can result in an optimum is un- whereA is the column vector formed bg;. Note that by

known. Since the MS method is a straightforward methoddefinition S (S™1) is = dependent, hence, the reconstructed

with high computation efficiency, any solution to this prob- signals will be different from the original source signals for

lem requires further investigation. different delay timer. Now, in contrast to the case of zero
As suggested by Molgedey and Schudtkt], it is also  cross-correlation, intrinsic finite cross-correlation inevitably

possible to introduce a cost function whose minima detercauses the imperfection in the separation, which simply im-

mine the mixing coefficient matrix. With such a cost func- plies that the solution could not be uniquely determined. This

tion approach, Ehlers and Schuster detailed a two-step sepdeeply reflects the nature of the blind source separation in

ration procedure that brings out the optimal solution for thethe inverse problem we have to face. In general, nonunique-

separation problem of correlated mixed sigrdlg]. In this  ness in solution is inevitable in handling the inverse problem

paper we will present another possible solution to the weakf13].

ness in the MS method, namely, a separation procedure as- Let us further explore this imperfect feature by a pertur-

sisted with reference signdlSPARS. The merit of this bation analysis. For a small nonzero cross-correlation, the

SPARS approach is that the separation process is essentiatigrrelation may follow

an eigenvalue problem approach and thus physically appeal-

ing and straightforward. Meanwhile, the result of the separa- (ai(Day(t"))=Ki([t—t"|)&; +eLj(|t—t']), (7)

tion procedure is reliable as supported by the perturbation .
analysis. In Sec. Il it will be analytically shown that the wheree is used to denote the strength of the source cross-

zero-mismatch property does not hold in the case of ﬁnitecorrelatlon strength. Again, let us s@(t))=0. We define
source cross-correlation. However, in Sec. Il we will showXi(0)=Ai, Ni(7)=Ni; Lij(0)=1;j, Lij(r)=I;;, (i#]), and
that with SPARS one can obtain a new handle on choosingi =0=I;i. The matrices M{;=(I{(t)I{(t)) and Mi’jr
the optimum time delay that can result in a minimal mis- =(I{(t)I{(t+ 7)) can_be deduced. They aM’'=CAC
match between the reconstructed signals and the originak sCLC" andM’'=CACT+eCLCT. Thus

source signals. Two criteria for judging the goodness of the _ -
optimization will be proposed in Sec. IV. We define the nu- C M'(C")"'=A+eL, C M'(CT) " '=A+elL.
merical setting of simulation in Sec. V. In Sec. VI simple (8
and known source signals are employed to illustrate the de- ,

tails of the SPARS method. The influence of finite dataVVe invert the second part of EB), i.e.,

length on signal separation will also be clarified. In Sec. VIl

we will extend the analysis to complex time series to further T -le— 1 AL o AL

test the applicability of the SPARS method. The effect of C(M)7C A+el AT (U=eLAT), ©
channel noise will be addressed in Sec. VIII. Finally, we

summarize our work in Sec. IX as the conclusion. where U is the unit matrix. By Eqs(8) and (9) and after

some algebraic calculations, it can be deduced that

Il. INFLUENCE OF FINITE CROSS-CORRELATION M'M’~1C=CAA U+e(A TALA 1=LA 1)
ON THE MS SCHEME

. . - +0(e2,7)]. 10
Let us first give an exact formalism for the case of finite (e%7)] (10

source cross-correlation for the MS scheme, in this case, th@ne can see that a suitable choice ofcan lead to

cross-correlation (A"*ALA"1—LAY~0, and thus arO(s2) approxima-
o tion. This change of mismatch is caused hyand it clearly
(ai(haj())=Qji;, (a(t)aj(t+7)=Q;. (3) shows that the time delay controls the separation perfor-
mance.

Thus the matricesM and M becomeM=CQC" and M
=CQCT, respectively. HereQ (Q) is the matrix with ele-
mentsQ;; (Qjj). Now, Eq.(2) is replaced by

Ill. FORMALISM OF THE REFERENCE SIGNAL
APPROACH

Next, we present one possible approach to resolving the
above-mentioned difficulty in the MS method. Our approach
is to introduce oneirtual channel where a chosen reference
_ ~ signal is embedded. For illustration and comparison, we first
We can seQQ 1=SAS™ !, thus simply assume the source independence still holds. We now

(MM~1)C=C(QQ™Y). (4)
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have new f(+1) “virtually detected” signals asl(t)
=1i(t) +bjaedt), i=1,2,..n and I/ ,(t)=a,(t) where
a.e1(t) is the reference signal ang is the mixing coeffi-
cients, which can be set as 1 for simplicity. We
choose a sin(wt) as the reference signal, and thus
(are(t)are(t+ 7)) = (?/2)cos(vr). By settingB as the col-
umn vector formed byb;, the individual correlation func-
tions can be written as

2 2
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@
<biaref(t)bjaref(t+ T)> = 2 COiWT)bibj

2

o
— — cogwr)BBT,

5 (13

where the correlation of reference signals has been applied.
For simplicity, here we also assuni@(t)a;(t+ 7))=0 for

a . . .
biae(t)a et + 7)) = — cogWr)b— — cogwr)B, all i. This also means that we considenancorrelatedref-
(Bire Vet +7) g COSWTbi— 5 coswr) erence signal first.
11 In the same way as the eigenvalue approfth, the
o2 o2 contribution of the reference signal to SPARS can
(aredt)bjaredt+ T))Z?CO$W7)bj—>7 cogwr)BT, be analyzed. The matriced|;=(l{(t)I{(t)) and Mj
(12 =(l{(t)1j(t+ 7)) are
|
<|i(t)lj(t)>+<biaref(t)bjaref(t)> <biaref(t)aref(t)>
— y
. <aref(t)bjaref(t)> <aref(t)aref(t)>
ie.,
M+ EBeT g
2 2
M'= o2 W2 | (14
— BT _
2 2
and
— <| i(t)lj(t+ 7'))"'<biaref(t)l:)j‘aref(t_" T)> <biaref(t)aref(t+ 7')>
— y
N <aref(t)bjaref(t+ T)> <aref(t)aref(t+ 7')>
ie.,
a2 2
M+ = cogwr)BBT — cogwn)B
M'= 2 2 (15
o BT
> cogwr) > cogwr)
The inverse matrix oM’ thus follows:
M1 -M~1B
M/ -1_ _ 2 -1 2 _ 16
_BTM ! (% COE(WT)) 1+ % cogwr)BTM 1B (18
|
With Egs.(14) and(16), we obtain one of the key results, M'M’'~1C'=C'A’,
_ MM~ {[cogwr)] 1-MM 1B
=i {[cogwr)] o 18| .
0 [cogwT)] Ao AA 0
17 0 [cogwn)]Y)’
Thus, in the case aferosource cross-correlation anchan-
correlated reference signal, the separation performance of cC B
SPARS is exactly the same as that of the MS scheme. It can '
C . (18
be shown that 0 1
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In other words, after solving the eigenvectors, the recon- 1 N ref
structed signals are E=l————|—|| (22
COgWT) | N
c'-1r= aA ) (199  can be minimized. Here)\cef/gef) are the corresponding ei-
ref

genvalues oM’'M’ 1 for the reference signal.

For the case where the source cross-correlatiamtszerg Obviously, the reference signal is crucial to SPARS. It is

o : . urgent to set up an efficient procedure to derive the reference
but still with a noncorrelated reference signal, it can be_. .
signal. Since we have shown that a noncorrelated reference

shown that signal could not provide further improvement, we should
MM’ ~1C =C/ A take a sine signal with the least correlation to the detected
' signal. This is to avail ourselves of the advantage suggested
— by the perturbation analysis. Also, as suggested by the ana-
,[AAT? 0 lytical result, we have numerically verified that it is not wise
0 [cogwr)] 1)’ (20 5 choose the frequency components outside the spectrum
range of the detected signals, since they usually do not pass
CS B the double check criteria listed below. Thus, practically, to
C’=( ) set the range of frequency for searching for the reference
0 1 signal, it would be useful to take a power spectrum on the
) detected signals first. The recipe for the SPARS method is as
and the reconstructed signals are follows.
s1p (1) Perform a power spectrum analysis on the detected
c'h= A |’ (21)  signals to determine the spectrum region.

(2) Take a sine signal whose frequency is within the re-

after following exactly the same calculation proceduregion and calculate its cross-correlation to the detected sig-
nals

shown above. . .
(3) Choose the least-correlated sine signal as the refer-

ence.
IV. OPTIMIZATION CRITERIA AND THE RECIPE (4) After the separation, run a double check on the con-
FOR REFERENCE SEARCHING currence of minima in the reference mismatch and error

It seems that there is no need for a noncorrelated refefunction to ensure the correctness of the chosen delay time.

ence Signal since SPARS is exaCtly the same as the M@n the other hand, as may have been expected fror(ﬂ_B)q_
scheme in mathematics. However, it should be kept in mingyhere the reference amplitudevanishes, the amplitude of
that the MS scheme has a serious optimization problem. Ighe reference signal is found to be not so important. Thus one
contrast, for the SPARS method, we know the reference Sig:an S|mp|y choose the reference amp]itude with the same

nal. By the well-chosen reference signal, we can deduce agrder as the detected signal. We will provide numerical sup-
optimal time delay by minimal mismatch between the reconport in the following sections.
structed and the original reference signals. This provides a&]a—
vantages beyond the MS scheme. V. NUMERICAL SETTINGS OF SIMULATION

Intuitively, a successful separation should bring one of the EXPLORATION
reconstructed signals close to the reference signal with a ) ) .
minimum mismatch and the eigenvalue should be close to Before presenting the numerical results, let us first quan-

[cos(v)] . For a noncorrelated reference signal, we knowlify the degree of success for a separation sburce signals.

that with the chosen time delag— aef andA’'—S 1A, We defineA; as the difference between the maximum and

after solving the eigenvector. Is it possible thet—S-1A e minimum of the original signaa(t). To evaluate the
—.A+0(&?) for a chosens? This is impossible for a non- mismatch per unit time interval, we perform a long time

correlated reference signal as shown above. Nevertheless, tm_/)erage 9f the absolute d|ff§r.ence petween the ;eparated
results of noncorrelated reference signals are important sinc‘?g?al a(t) and thTe ,orlgmal signal a;(t), e,
they indicate that the reference signal should relate to thélai (1) —aj(t)[)=(1/T) [ola/(t) —a;(t)|dt, whereT should
detected signals. On the other hand, the perturbation analydi® long enough. The minimum mismatch of the recon-
suggests that with a correlated reference signal, it is possibfiructed signals/ (t), nameds; , is defined as the minimum

to have such an improvement of source separation. Thus wef & j=(|a/(t)—a;(t)[)/A;, where j=1,2,..n. This

take a reference signal weakly correlated to the detected sigethod of definition is necessary because in practice we
nals. We also know that if the separation could not lead to deed to compare each reconstructed signal with all source
minimum mismatch for the reference signal, the success dfignals to identify the correspondence. Finally, we can quan-
separation is questionable. This observation gives us two crtify the average degree of mismatch for the whole separation
teria for getting an optimized signal separation. One is basebh a unit time interval by defining=(1/n)={_, s where a

on the mismatch between the reference signal and its recomormalized intensity scale has been used.

structed counterpart. Another one can be established in terms Next, we define some notations used in the paper. The
of the eigenvalue, i.e., the optimization should be achievedource mismatchs is for the sources we hope to separate
when the error function, which is defined as based on the MS schent@n the other hand, for SPARS, we
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S 0.0 il
use a different kind of symbab for the source mismatch 8 oqLV VO VAR
which here means only that the sources we hope to separate o 0ol | |

are employed to calculated the mismatch. The mismatch of 9.0 015 ‘ 1fo 15 20
reference signal is not included. In the meantime, the mis-
match between the reference signal and the reconstructed
signal, which is close to the reference signal, is defined as FIG. 2. (a) Source mismatchs versus delay timer for two
o . source signals whose forms are sifi®.Cross-correlation of source
For the numerical testing presented in this paper, the mixsignals.

ing coefficient matrix is given as

delay time t©

B. The influence of cross-correlation

1.0 0.
=(0 71 3 To illustrate the influence of cross-correlation on signal
' : separation, let us take the source signals to ayét)

like that in Ref.[11], and we also seéB=1. We note that a =sin(171)+ B sin(12) and a,(t)=sin(12), and choose

different choice of mixing coefficient matrix does not changeafef(t):s'n(za)' The signals to be separated arg(t)
the general features reported below. In simulation, we em='1(t) Tawedt), 12(t)=12(t) Tar(t), and I5(t)=ae(t).
ployed a fourth-order Runge-Kutta algorithm to integrate the/Ve construct the matrix My;=(I{(t)1;(t)) and M
differential equations. Usually, the time step is 0.01 and the=(!{ (t)!;(t+ 7)), wherei,j=1,2,3, and solve the eigenvec-
data length for evaluation is, on average, 20 000. All dataors of the matrixMM ~*. The cross-correlation between the
sets used here are taken after the transient, and the meansseurces is
the data sets have been shifted to zero.
(a(hay(t+7) B
VI. NUMERICAL EXPLORATION WITH SIMPLE, \/<a§(t))\/<a§(t)> B \/1+'3
KNOWN SIGNALS

cogwr)

A. The influence of data length andw=19. By setting8=0.0, 0.01, and 0.1, the influence of

The zero-mismatch property in the MS scheme is a renonzero cross-correlation can be explored. Again, we first
markable achievement. As shown above, a violation of stapresent the source mismatch obtained by the MS scheme in
tistical independence between the source signals leads toRig. 2(a). The cross-correlation is presented in Fih)20ne
breakdown of this unique property. Here, we will demon-can see that as the statistical independence is improved
strate that data length also affects this property greatly.  (cross-correlation is smajl there is more of a chance to

For simple illustration, let us take the source signals to beachieve a better separation. This feature is also true for
a;(t)=sin(1#) and a,(t)=sin(19). Thus, in principle, SPARS, as shown in Fig. 3. Unlike in Fig(a®, there appear
there is no cross-correlation between the source signals. Fefore divergencédiscontinuity points for SPARS due to the
comparison, we use two different data lengths, 20 000 anthtroduction of the reference signal. On the other hand, re-
160 000. As shown in Fig. 1, the separation performancderring to Figs. 8b) and 3c), the reference mismatch and the
changes as is varied while a longer data length reduces theerror function remain unchanged as the cross-source correla-
mismatch. One can expect that unless the separation condien g varies. This is because the cross-correlation between
tion is violated, the zero-mismatch property will be metsource and reference signals is zero.
when the data length is infinite. Here the divergence origi- Next, we consider the situation in which the reference
nates from deM=0 as7=(n+1/2)w/w, wherew=17 and  signal is correlated to the source signals. Let us take a dif-
19, andn=1,2,... . We should emphasize that since the availferent reference signad,.(t) =sin(11), to show the gener-
able data length is always finite, differesi lead to different  ality. We also takea,(t) =sin(17%)+ g sin(11) and a,(t)
separation performance. The effect of finite data length is=sin(19). Again, we take8=0.0, 0.01, and 0.1 to explore
also inevitable in the SPARS method. However, as will bethe influence of this finite correlation. The results are shown
shown below, one can still deduce an optimal time delay foin Fig. 4. One can see that a strong cross-correlation between
source separation in SPARS, and thus the influence of finitéhe reference and source signals results in a failure of signal
data length can be effectively removed. separation. Please note that the variation feature remains un-
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FIG. 5. (a) Source mismatclé versus delay time for the mixed
chaotic signals(b) Cross-correlation of source signals.
delay time t
VIl. NUMERICAL EXPLORATION WITH COMPLEX
FIG. 3. (a) Source mismatchS; versus delay timer for two SIGNALS
source sine signals in which different correlation coefficightare ) ] o
used.(b) Reference mismatches . (c) Error functionE. The origi- A. Separation of mixed chaotic signals
nal source signals are the same as those used in Fig. 2. In this section we will treat complex time series to give a

further illustration of SPARS. Instead of the sound signals
changed in the error function. Thus the concurrence of th&ised in Ref[11], here we take a chaotic signgl4] as a
local minima at the same for the reference mismatch and Notable extension. These signals are deterministic, but their
the error function completely disappears when the referencéP€ctra are broadband which could not be separated simply
signal is strongly correlated to the source signals. This is ith a filter.

useful result. We can use this property as a double check of Ve first choosea(t) anda,(t) the z components of the
the correctness of separation performance. Lorenz model with different values of, i.e., dx/dt

=10.0x—-y), dy/dt=rx—y—xz,  dz/dt=xy—2.66,
wherer =28.0 and 29.0, respectively. As shown in Figg)5
there are gaps in the line and this indicates that the mismatch
could not be evaluated in some regions. This is due to the
fact that the separation conditions are violated—mainly, the
eigenvalues oMM ~! are not real. This surely shows that
separation no longer works for any arbitraryFurthermore,

the mismatchs varied with time delayr. Again, this clearly
shows that zero mismatch does not hold in this case and the
reason is the cross-correlation is not zero as shown in Fig.
5(b). For the SPARS method, we employ the same data set

source mismatch

€
g 113_? used in Fig. §a) and mingle the detected signdigt) and
E 102 I2(t)_ with a reference signa,«(t) =31 s_m(l"t). Referring
8 10° to Fig. 6, one can see that the separation performance of the
3 10 MS scheme is faithfully reproduced by SPARS at the local
3 10 minima. The location of the time delay at the local minima
10° for all three kinds of mismatch, i.eg, &5, andé,, and the
10° error functionE are closely matched. It can be seen that the
w 4o values ofé and &5 are almost the same when the time delays
5 4 7 are located at the minima of the error function. On the
5 10 other hand, the source mismatch#and 5, show different
10° C variation behavior as themoves away from the minima. In
10'8_0 65 10 15 20 this case, the performance of SPARS is comparable to that of

delay time the MS scheme at the local minima. Let us examine more
closely the role played by the reference signal, since in prac-
FIG. 4. (a) Source mismatchs, versus delay timer for two tice this is the only known “source” we have. The concur-
source sine signals with different correlation coefficigntb) Ref-  rence of local minima irE and &, at the samer is expected,
erence mismatches . (c) Error functionE. as analytically discussed in Sec. II. By this concurrence pat-



4878 KO, HO, CHERN, HSU, AND WANG PRE 58

10" - 10° -
:Cg (a) 5 (a)
© 0 2
0 J P \1 g 10}
g 10" J \N L/ S
2 8 10?
® 102 : ‘ , §
10° - 0%« ‘ L
g ) 7
& 0 \ c 041 —<ama > (b)
IS 2 \ S L 1 2
8 107+ ﬁ 02 <a2(t)a1(t+r)>
2 00l I i
o g 0.0 e
o 10+ ‘ @ 02
10% - 3 I
- (© S 04|
10'C R T TR S
w - 1 00 05 10 15 20
5 102} Y \ \/ delay time t
o b
107k Y FIG. 7. (a) Source mismatck versus delay time for the mixed
8 L Il L I} 1 1 - H H
100_0 05 10 5 20 chaotic signals(b) Cross-correlation of source signals.

delay time t ) . L
on the reconstructe€3; (j=1,2,3) in the case of mixing

FIG. 6. (a) Source mismatclds versus delay time for the data  two source signals. The eigenvalue will be calculated first
set used in Fig. 5 with reference signal 31 sinj17b) Reference  and then the elements of the eigenvector madix Thus it
mismatchess; . (c) Error functionE. The data set is the same as is expected that the error function is more robust as the ref-
that used in Fig. 2. erence signal changes. This matches numerical results.

ded h imal ti delay for the si The exact location of a minimum depends on the resolu-
tern we can deduce the optimal time delay for the signajyy of - ang a higher resolution ingives a better estimation

separation. As shown in Figs. 5 and 6, this delay tim&so ot ihe minimum. We term the minimum with a better esti-
leads to an optimum separation, since the source mismatch iS-ion the “global” minimum. However, we should address

close to the minimum. this point more carefully, since the error functi@is the

Let us consider another example where the source Cros§yqq|yte value of the difference between the exact and the
correlation is smaller. This time we consider a separation ofymerically calculated eigenvalues. The distribution of the
two mixed signals, one from trecomponent of the Lorenz  , nerically calculated eigenvalue becomes critical. Math-

chaos where =28.0 and the other from trecomponent of o atically, if the reference signal is perfectly statistically
the Rossler chaosdx/dt=—(y+2z), dy/dt=x+0.2y,

dz/dt=0.4+ (x—b)z with b=5.7. We first present the result

O
derived based on the MS scheme and the statistical indepen- 5 0% (a)
dence check in Fig. 7. One can see that the cross-correlation ‘g 107
is much smaller in comparison with the above example. B
However, differentr’s still lead to different separation per- g 102
formances and the variation ifi can be significant. Again, 5
the zero-mismatch property does not hold. Next, we present % 10 o

the SPARS analysis. We take the reference signal to be 10°
23 sin(1T). As shown in Fig. 8, the location of time delays
for the local minima ofs;, §,, andE are almost the same.
This is further typical numerical evidence of the concurrence
feature. Again, this emphasizes the advantage of SPARS in
dealing with finite cross-correlation. Meanwhile, the “glo-
bal” minimum of the error function, labeled by a down ar-
row as shown in Fig. 8, provides us with a very good source
mismatch while the local minima of the reference mismatch
are almost the same and do not provide us with more useful
information.

N

VWW

reference mismatch

error E

B. Further investigation of the location of minimum

|
156 20

The exact location of the minimum influences the estima-
tion of time delay and the separation performance. For the
error function, the location of the minimum depends on the FIG. 8. (a) Source mismatcl, versus delay time for data set
distribution of the numerically calculated eigenvalue. On theused in Fig. 7 with reference signal 23 sin(lL7(b) Reference mis-
other hand, for the reference mismatch, the location dependsatchess, . (c) Error functionE.

delay time t©
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source mismatch

FIG. 9. Cross-correlation between source signals and reference
signal versus frequency of the reference signal.

reference mismatch

independent of the source signals, then, after solving the ei-
genvalue, the corresponding eigenvalue of the reference sig-
nal should be exactly equal to 1/casj. However, in our

recipe, the reference signal should be weakly correlated to w

the source signals. Thus, one can expect the error funEtion % %
to be close to zero. It is numerically found that the error

function can be close to zero and, furthermore, @al€1, 1070 1, L
as shown in Fig. &). Thus the minimum of the error func- 00 05 10 15 20

tion E occurs atr=km/w (k=1,2,...). Although one can delay time <
deduce the location of the minimum for the error functien

the location of the minimum for the reference mismatch re- FIG. 10. (8 Source mismatch(b) reference mismatch, ar(d)
. . error function for the mixed signals used in Fig. 7 with different
mains undetermined.

reference signals.

C. Practical deduction of the reference signal +a§)/[ai COS(N17')+a§ cos@,7)], which is more compli-

We should note that an arbitrarily chosen reference signatated. But, the silent feature of the error function, i.e., inde-
does not imply that it has to be a good reference signal. Hergaendence of the reference amplitugledisappears, as shown
we illustrate the influence of the reference signal in the caséh Fig. 13, where two differentr, are presented and/,
of complex time series. First, let us evaluate the correlation=17 andw,=12.
sum Cg=|[(l1(t)aredt))|+[{I2(t)aredt))], where a(t) It is also possible to use multiple reference signal chan-
=« sinwt) anda= 23, for differentw and the source signals nels. Again, the analysis is more complicated and a separate

are the same as those used in Fig. 7. As a typical example, lefror function is needed for every additional reference chan-
us address the separation of two different frequencies. As

shown in Fig. 9, the correlation sum has a higher value at 10" _
w=38 and a lower value av=17. For these cases, the source
mismatches are significantly different. One can see that the
frequency component with least correlation to the source sig-
nals has a better separation performance, as shown in Fig.
10. Furthermore, in the case of low correlation, the concur-
rence feature of local minima at the samean be identified 10°0 . e
while this identification is difficult for the high correlation.

It is important to examine more closely the influence of
the amplitudea. Let us still use the above example as an
illustration. Let us first look at Fig. 11, where the frequency
w=17 is a good reference signal. As expected from the ana-
lytical result, the source mismatch remains the same for dif-
ferent values otx. However, the reference amplitude affects
reference mismatch whea is small. In contrast, there is
almost no change in the pattern of the error functorThis
again gives us one more numerical support and the concur-
rence of local minima at the sanres a nice criterion. It is
worthwhile to compare the case of=8, which is not a
good reference signal. As shown by Fig. 12, the feature 10‘(7)'0 05 10 15 30
shown in Fig. 11 remains: the amplitudeis not a critical : : . ’ ’
parameter. delay time ©

Please note that the reference signal with multiple fre- g 11, (a) Source mismatchp) reference mismatclic) error
quencies can also be used. Let us takg(t) =y sin(Wit)  function for the mixed signals used in Fig. 7 with different

+a, sinfw.t) as an example. In such a case, thesv)]* reference amplitude; here the referencerisin(1%) and « is the
in the error function should be replaced byai( amplitude.

—o=115
o e @)
10

10"

107}

source mismatch

reference mismatch

error E
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source mismatch
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delay time

FIG. 14. Data set is the same as Fig. 7. Bold solid line is the
performance of the MS scheme. Solid line is the performance of the
SPARS method with one reference channel. Dashed line is the per-
formance of the SPARS method with two reference channels.

VIII. INFLUENCE OF CHANNEL NOISE ON SIGNAL
SEPARATION

In signal detection, channel noises are unavoidably em-
bedded, and the influence on signal separation should be ad-
dressed. Without restriction, we can take the detected signals
asl{(t)=1,(t)+ », wherey; is the added channel noise at
theith detector. To simplify the discussion, we assume the

function for the mixed signals used in Fig. 7 with different refer- sources are statistically independent and the channel noises

ence amplitude; here the referencarisin(&) and « is the ampli-
tude.

nel. From numerical simulations, we learn that this extension

are colored, i.e.,

D
(mi(t) 7]J(t+7)>__exl< )5 =Df(7) s, (23

offers no additional advantages, as shown in Fig. 14, where
the separation performances of the MS scheme, SPARS Wimhere D denotes the noise inten_sity*c is the correlation
one reference channel, and SPARS with two reference chatime, andf(7) = (1/7;)exd — 7. It is reasonable to assume

nels can be seen.

10 -

5 —a,=23 0,=115 (a)
*g 100 —a,=23 a,=2.3
£ 104
3 1o \
= 102
]
108 '
5 [ —o0,=23 a,=115 (b)
g 0% —q,=23 ap23
K]
S ! I
8 10-2W ﬁ
c
o f&y
Q£
® 10+
5
10°r — =23 0,=115 (c)
102: —a1=23 a2=2.3
w C
£ oD J
® 104
107 L 1 1 |

00 05 1.0 15 20
delay time t

FIG. 13. (a) Source mismatch(b) reference mismatch, arna)

the noises are not relative to the sources such that
(mi(Da;(t"))=(aj(t)7;(t"))=0. (24)

Next, with channel
=(I{(OI{(t)) andM;

noise and the new matricés
=(I{ (1] (t+ 7)) it follows that

M'=M+Df(0)U, M'=M+Df(n)U. (25
and M’—Df(T)U
is [M'—Df(r)u]?

Therefore, M’'—Df(0)U=CACT
=CAC', whose inverse
=(C"H*A"IC™ L Thus

—Df(nU] C=C(AA D).
(26)

[M’—Df(0)U][M’
Furthermore,

M -Df(n)U]™

After some algebra, it can be shown that

M'M’'~1C=C(AA ) (U+DJ{AA"1C L(CT) !

error function for the mixed signals used in Fig. 7 with a reference

signal a4 sin(1%) + a5, sin(12) whosea; and a, are different.

X[f(0)—f(n)]A"}+0(D?). (28
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FIG. 15. Source mismatch versus delay time obtained based on FIG. 17. Data set of Fig. 7 is separated with SPARS for the
the MS scheme with different detective noise leelData setis  same noise leveD =2.3. Solid line is the performance of reference
the same with Fig. 7. signal 23 sin(1%). Dashed line is the performance of reference sig-

nal 230 sin(17).
Again, one can see that if the noise strengtfs too strong,
the MS scheme will fail, and so does the SPARS method(dashed ling and recalculate the separation performance of
Therefore low-noise detectors are needed to ensure the relsPARS. The result is shown in Fig. 17. The lower bounds of
ability of signal separation. source mismatch are almost the same.

Let us use the original data set of Fig. 7 with an addition
of noise. Instead of colored noise, we take the noises as
being a randomly, independently, and uniformly generated
form [—D,D]. For comparison, we takB=0.23, 2.3, and The blind source separation based on the MS scheme is
23, which are roughly 1%, 10%, and 100% of the intensity ofphysically appealing and the whole problem can be reduced
the detected signals, respectively. We first show its influencé an eigenvector problem elegantly. However, in practice
on the MS scheme. As expected, the separation performane&o important factors—source cross-correlation and data
gets worse as the noise intensity increases, as shown in Figngth—can seriously hinder the separation performance in
15. the MS method and they were left unsolved. We emphasize

Next, let us treat SPARS. For a typical example, we takehat finite source cross-correlation is inevitable when the
the reference signal as 23 sin{L7 As expected, the noise spectra of the sources are overlapping and this source cross
affects the separation performance of SPARS. Higher noisdependence is hardly justified in advance. In the meantime,
intensity causes a worse source mismatch, though the refethe data length in practical analysis is always finite. Al-
ence mismatch and the error function are almost the same, @sough these difficulties also occur with the other methods of
shown in Fig. 16. Again, it is worthwhile to note that the blind source separatiof¥,10], extensive development and
reference amplitude has no influence on limit of source misimplementation has been achieved for these noneigenvalue
match. As an example, we take reference signal 230 sip(17 problem schemef4,10]. In contrast, to our knowledge, no

practical implementations and/or devices have been devel-
10° - __peo (@) oped for the MS schemgl5]. As seen above, even with

IX. CONCLUSIONS

S 401l D02 finite data length and source cross-correlation, the separation
g can still be carried out for the MS scheme. But the problem
€ is that there are too many available time delay®r sepa-
8 ration. This turns out to lead to a serious optimization prob-
§ lem. This problem actually had remained an unsolved diffi-
culty in applications with the MS scheme. We should
5 mention that in the work of Molgedey and Schuster, they had
g introduced an idea of cost functidi]. This cost function
£ approach can be combined with the eigenvalue problem ap-
8 proach for solving the separation problem with correlated
o signals as shown in Ref12].
2 As shown above, with the use of a carefully chosen ref-
- 10° - —peo erence signal, one can find an operati_onally a_vgilabte _
40 —D=0.23 © separate the mixed signals with an optimum minimum mis-
L 10" B . match for the reconstructed signals and the original sources.
5 107 , It should be emphasized that the eigenvalue problem ap-
& 10° AR i proach is still without any cost function. We have provided a
10° %M)\A/\)\ heuristic illustration to show its reliability. Furthermore, our
10'6 005 10 15 20 simulations strongly support its extension to different models

and larger system size , though we do not present the nu-
merical details here. The influences of nonzero cross-

FIG. 16. Data set of Fig. 7 is separated with SPARS for differ-correlation, finite data length, and channel noise on signal
ent noise leveD. (a) Source mismatch(b) Reference mismatclic) separation have been extensively analyzed. It has been
Error functionE. shown that in the worst case all these factors—cross-

delay time 1
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correlation, data length, and channel noise—can destroy thihe MS scheme, particularly in the case where source cross-
possibility of separation and result in failure. On the othercorrelation is not weak. At this stage, the optimum separation
hand, with finite data length, if the cross-correlation is not sgperformance achieved by SPARS is only with numerical
strong and the channel noise is small, the separation problesupports. Nevertheless, it is worthwhile to call attention to
will lead to an optimization problem, and it is solvable by the this intuitive approach. This approach has pointed out a pos-
SPARS method as shown above. Nevertheless, we shougible path toward a better solution in the field of blind signal
report our results of the strong correlation case, although, iseparation. It is worthwhile to emphasize that practical
strong correlation, the separation performance of SPARS ignplementation of optimization is straightforward. The opti-
better than that of the MS scheme. It turns out that the permization of blind source separation demonstrated here
formance is poor, unfortunately. should have a rather positive meaning. Extensions to cases
Essentially, our result shows that if we can tune the freawhere the number of sources is unknown and experimental
quency such tha/— a., A'—S A automatically holds implementation to optical signal separation where interfer-
after solving for the eigenvectors. Is it possifié—S 1A ence may be important are currently in progress.
—A+0(&?) or even betteffor the chosenr? Our analysis
shows that a perfectly noncorrelated referepce signal does ACKNOWLEDGMENT
not provide this improvement. However, with a reference
signal that has the least correlation to the detected signals, This work is partially supported by the National Science
improvement is possible. With this approach it is possible tadCouncil, Taiwan, Republic of China under Project No.
achieve a better separation performance in comparison witNSC87-2112-M-006-010.
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