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Eigenvalue problem approach to the blind source separation:
Optimization with a reference signal
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The eigenvalue problem approach to the blind source separation@L. Molgedey and H. G. Schuster, Phys.
Rev. Lett.72, 3634 ~1994!# is reinvestigated. The essential assumption is that the source signals should be
statistically independent for the eigenvalue method to be applicable. When the source signals are correlated,
unfortunately, this elegant approach faces a serious problem of optimization. We propose that by employing a
reference signal in the separation procedure, the reconstructed signals that have an optimum minimum mis-
match to the original sources can be obtained. The role and the criterion in choosing the reference signal will
be extensively illustrated. Furthermore, the influences of nonzero correlation between different source signals,
finite data length, and channel noises on signal separation will also be fully clarified.
@S1063-651X~98!14110-7#

PACS number~s!: 87.40.1w, 05.40.1j, 05.45.1b, 85.25.Dq
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I. INTRODUCTION

Blind source separation has been an intriguing issue f
long time, partially due to its similarity to the human exp
rience, e.g., the cocktail party effect@1#. It also has great
application to various fields. The simplest case of the sou
separation problem occurs between two speakers when
the mixture of their voices reaches two microphones and
wants to separate both sources such that each output ch
registers only one voice@2#. Further examples, involving
many sources and receivers, are the separation of odors
mixture by an array of sensors and the parsing of the e
ronment into different objects by our visual system@3#. Be-
cause of the complexity inherent in these problems, bl
source separation has stood as an unsolved problem in
tory. The difficulty exhibited in such source separation co
be described as follows. Assume that there aren source sig-
nals,ai(t) ( i 51,2,...,n), and that they satisfy the correlatio
relation ^ai(t)aj (t8)&5Ki(ut2t8u)d i j , which means that
they arestatistically independent. Meanwhile, assume tha
there aren detectors that can providen detected signalsI i(t)
( i 51,...,n). Thus the detected signals can be related to
source signals byI i(t)5( j 51

n Ci j aj (t), where Ci j are the
mixing coefficients. Because the matrixC is generally not
symmetric and the source strengths are not available,
total unknown number of variables isn(n11). On the other
hand, there are onlyn detected signals available. The clas
cal problem ishow one determines the coefficients Ci j and
the source strengthsl i5Ki(0) from a measurement of Ii(t).

Unlike other methods using neural network approach@4–
6#, cumulants, and polyspectra@7–10#, Molgedey and
Schuster~MS! used time-delayed correlation to separate
mixture of independent signals@11#. Since there is no cos
function or adaptation rule that may cause conceptual d
culty and ambiguity, this approach is physically straightfo
ward and appealing. Molgedey and Schuster show tha
PRE 581063-651X/98/58~4!/4872~11!/$15.00
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though the symmetric correlation matrix̂I i(t)I j (t)&[Mi j
alone cannot solve the problem, the time-delayed correla
matrix ^I i(t)I j (t1t)&[M̄ i j can provide the additional con
ditions for resolving the problem. In a more explicit form,

Mi j 5(
l

Cil Cjl l l , M̄ i j 5(
l

Cil Cjl l̄l , ~1!

whereCi j , l i , and l̄i5Ki(t) are unknown. With Eq.~1!,
one can diagonalizeM andM̄ simultaneously, and this give
C21M (CT)215L andC21M̄ (CT)215L̄ whereL i j 5l id i j

and L̄i j 5l̄id i j . Eventually, Eq.~1! leads to an eigenvalue
problem,

~MM̄ 21!C5C~LL̄21!. ~2!

Usually, MM̄ 21 is not symmetric. BecauseC is formed by
the eigenvectors, the diagonal elements ofC can be normal-
ized to unity. Note that for simplicity, the signal is with zer
mean, i.e.,̂ ai(t)&50. This zero-mean assumption will no
affect the result because the essential message is includ
the time-varying part. Equation~2! can be solved by the
standard techniques of numerical linear algebra with h
computational efficiency. As an impressive examp
Molgedey and Schuster successfully separated the m
sounds from two independently crying babies@11#.

The blind source separation based on the MS schem
rather novel, but there remains one critical parameter,
the time delayt, that must be clarified. It has been sugges
that this problem is solvable simply by choosing the tim
delay that satisfiedKi(0)K j (t)5l i l̄jÞl̄il j5Ki(t)K j (0)
for all iÞ j @11#. But this condition implies an already suc
cessful separation, and its validity is based on three co
tions ~separation conditions!, i.e., ~1! M̄ is not a singular
matrix, ~2! the eigenvalues ofMM̄ 21 are nondegenerate, an
~3! the eigenvalues ofMM̄ 21 should be real. As soon a
4872 © 1998 The American Physical Society
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PRE 58 4873EIGENVALUE PROBLEM APPROACH TO THE BLIND . . .
the eigenvectors are deduced, Eq.~2! implies that after the
separation, the mismatches for anyt should be the same an
all are exactly equal to zero. This zero-mismatch propert
remarkable since it means that the classical blind sou
separation has been perfectly solved. But, as will be sho
below, if ~i! the statistical independence of the source sign
is not satisfied and~ii ! the data length available is finite, the
this zero-mismatch property disappears and the MS me
may not be applicable. Hence, in practice, numeroust’s lead
to separation, but whicht can result in an optimum is un
known. Since the MS method is a straightforward meth
with high computation efficiency, any solution to this pro
lem requires further investigation.

As suggested by Molgedey and Schuster@11#, it is also
possible to introduce a cost function whose minima de
mine the mixing coefficient matrix. With such a cost fun
tion approach, Ehlers and Schuster detailed a two-step s
ration procedure that brings out the optimal solution for
separation problem of correlated mixed signals@12#. In this
paper we will present another possible solution to the we
ness in the MS method, namely, a separation procedure
sisted with reference signal~SPARS!. The merit of this
SPARS approach is that the separation process is essen
an eigenvalue problem approach and thus physically app
ing and straightforward. Meanwhile, the result of the sepa
tion procedure is reliable as supported by the perturba
analysis. In Sec. II it will be analytically shown that th
zero-mismatch property does not hold in the case of fin
source cross-correlation. However, in Sec. III we will sho
that with SPARS one can obtain a new handle on choos
the optimum time delayt that can result in a minimal mis
match between the reconstructed signals and the orig
source signals. Two criteria for judging the goodness of
optimization will be proposed in Sec. IV. We define the n
merical setting of simulation in Sec. V. In Sec. VI simp
and known source signals are employed to illustrate the
tails of the SPARS method. The influence of finite da
length on signal separation will also be clarified. In Sec. V
we will extend the analysis to complex time series to furth
test the applicability of the SPARS method. The effect
channel noise will be addressed in Sec. VIII. Finally, w
summarize our work in Sec. IX as the conclusion.

II. INFLUENCE OF FINITE CROSS-CORRELATION
ON THE MS SCHEME

Let us first give an exact formalism for the case of fin
source cross-correlation for the MS scheme, in this case
cross-correlation

^ai~ t !aj~ t !&5Qi j , ^ai~ t !aj~ t1t!&5Q̄i j . ~3!

Thus the matricesM and M̄ becomeM5CQCT and M̄
5CQ̄CT, respectively. Here,Q (Q̄) is the matrix with ele-
mentsQi j (Q̄i j ). Now, Eq.~2! is replaced by

~MM̄ 21!C5C~QQ̄21!. ~4!

We can setQQ̄215SL̃S21, thus
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~MM̄ 21!CS5CS~L̃!. ~5!

By the eigenvalueL̃ and eigenmatrixCS, the reconstructed
outputs A8, a column vector formed byai8 , follow A8
5(CS)21I . Since I 5CA, the connection between the re
constructed and the source signals is

A85S21A, ~6!

whereA is the column vector formed byai . Note that by
definition S (S21) is t dependent, hence, the reconstruct
signals will be different from the original source signals f
different delay timet. Now, in contrast to the case of zer
cross-correlation, intrinsic finite cross-correlation inevitab
causes the imperfection in the separation, which simply
plies that the solution could not be uniquely determined. T
deeply reflects the nature of the blind source separation
the inverse problem we have to face. In general, nonuniq
ness in solution is inevitable in handling the inverse probl
@13#.

Let us further explore this imperfect feature by a pert
bation analysis. For a small nonzero cross-correlation,
correlation may follow

^ai~ t !aj~ t8!&5Ki~ ut2t8u!d i j 1«Li j ~ ut2t8u!, ~7!

where« is used to denote the strength of the source cro
correlation strength. Again, let us set^ai(t)&50. We define
l i(0)5l i , l i(t)5l̄i ; Li j (0)5 l i j , Li j (t)5 l̄ i j , (iÞ j ), and
l i i 505 l̄ i i . The matrices Mi j8 5^I i8(t)I j8(t)& and M̄ i j8
5^I i8(t)I j8(t1t)& can be deduced. They areM 85CLCT

1«CLCT andM̄ 85CL̄CT1«CL̄CT. Thus

C21M 8~CT!215L1«L, C21M̄ 8~CT!215L̄1«L̄.
~8!

We invert the second part of Eq.~8!, i.e.,

CT~M̄ 8!21C5
1

L̄1«L̄
'L̄21~U2«L̄L̄21!, ~9!

where U is the unit matrix. By Eqs.~8! and ~9! and after
some algebraic calculations, it can be deduced that

M 8M̄ 821C5CLL̄21@U1«~L21L̄LL̄212L̄L̄21!

1O~«2,t!#. ~10!

One can see that a suitable choice oft can lead to
(L21L̄LL̄212L̄L̄21)'0, and thus anO(«2) approxima-
tion. This change of mismatch is caused byt, and it clearly
shows that the time delay controls the separation per
mance.

III. FORMALISM OF THE REFERENCE SIGNAL
APPROACH

Next, we present one possible approach to resolving
above-mentioned difficulty in the MS method. Our approa
is to introduce onevirtual channel where a chosen referen
signal is embedded. For illustration and comparison, we fi
simply assume the source independence still holds. We
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have new (n11) ‘‘virtually detected’’ signals asI i8(t)
5I i(t)1biaref(t), i 51,2,...,n and I n118 (t)5aref(t) where
aref(t) is the reference signal andbi is the mixing coeffi-
cients, which can be set as 1 for simplicity. W
choose a sin(wt) as the reference signal, and th
^aref(t)aref(t1t)&5(a2/2)cos(wt). By settingB as the col-
umn vector formed bybi , the individual correlation func-
tions can be written as

^biaref~ t !aref~ t1t!&5
a2

2
cos~wt!bi→

a2

2
cos~wt!B,

~11!

^aref~ t !bjaref~ t1t!&5
a2

2
cos~wt!bj→

a2

2
cos~wt!BT,

~12!
o
c

^biaref~ t !bjaref~ t1t!&5
a2

2
cos~wt!bibj

→
a2

2
cos~wt!BBT, ~13!

where the correlation of reference signals has been app
For simplicity, here we also assume^aref(t)ai(t1t)&50 for
all i. This also means that we consider anoncorrelatedref-
erence signal first.

In the same way as the eigenvalue approach@11#, the
contribution of the reference signal to SPARS c
be analyzed. The matricesMi j8 5^I i8(t)I j8(t)& and M̄ i j8
5^I i8(t)I j8(t1t)& are
Mi j8→S ^I i~ t !I j~ t !&1^biaref~ t !bjaref~ t !& ^biaref~ t !aref~ t !&

^aref~ t !bjaref~ t !& ^aref~ t !aref~ t !&
D ,

i.e.,

M 85S M1
a2

2
BBT

a2

2
B

a2

2
BT

a2

2

D , ~14!

and

M̄ i j8→S ^I i~ t !I j~ t1t!&1^biaref~ t !bjaref~ t1t!& ^biaref~ t !aref~ t1t!&

^aref~ t !bjaref~ t1t!& ^aref~ t !aref~ t1t!&
D ,

i.e.,

M̄ 85S M̄1
a2

2
cos~wt!BBT

a2

2
cos~wt!B

a2

2
cos~wt!BT

a2

2
cos~wt!

D . ~15!

The inverse matrix ofM̄ 8 thus follows:

M̄ 8215S M̄ 21 2M̄ 21B

2BTM̄ 21 S a2

2
cos~wt! D 21S 11

a2

2
cos~wt!BTM̄ 21BD D . ~16!
With Eqs.~14! and ~16!, we obtain one of the key results,

M 8M̄ 8215S MM̄ 21 $@cos~wt!#212MM̄ 21%B

0 @cos~wt!#21 D .

~17!

Thus, in the case ofzerosource cross-correlation and anon-
correlated reference signal, the separation performance
SPARS is exactly the same as that of the MS scheme. It
be shown that
f
an

M 8M̄ 821C85C8L8,

L85S LL̄21 0

0 @cos~wt!#21D ,

C85S C B

0 1D . ~18!
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In other words, after solving the eigenvectors, the rec
structed signals are

C821I 85S A
aref

D . ~19!

For the case where the source cross-correlation isnot zero,
but still with a noncorrelated reference signal, it can
shown that

M 8M̄ 821C85C8L8,

L85S LL̄21 0

0 @cos~wt!#21D , ~20!

C85S CS B

0 1D ,

and the reconstructed signals are

C821I 85S S21A
aref

D , ~21!

after following exactly the same calculation procedu
shown above.

IV. OPTIMIZATION CRITERIA AND THE RECIPE
FOR REFERENCE SEARCHING

It seems that there is no need for a noncorrelated re
ence signal since SPARS is exactly the same as the
scheme in mathematics. However, it should be kept in m
that the MS scheme has a serious optimization problem
contrast, for the SPARS method, we know the reference
nal. By the well-chosen reference signal, we can deduce
optimal time delay by minimal mismatch between the rec
structed and the original reference signals. This provides
vantages beyond the MS scheme.

Intuitively, a successful separation should bring one of
reconstructed signals close to the reference signal wit
minimum mismatch and the eigenvalue should be close
@cos(wt)#21. For a noncorrelated reference signal, we kn
that with the chosen time delay,aref8 →aref and A8→S21A,
after solving the eigenvector. Is it possible thatA8→S21A
→A1O(«2) for a chosent? This is impossible for a non
correlated reference signal as shown above. Nevertheless
results of noncorrelated reference signals are important s
they indicate that the reference signal should relate to
detected signals. On the other hand, the perturbation ana
suggests that with a correlated reference signal, it is poss
to have such an improvement of source separation. Thus
take a reference signal weakly correlated to the detected
nals. We also know that if the separation could not lead t
minimum mismatch for the reference signal, the succes
separation is questionable. This observation gives us two
teria for getting an optimized signal separation. One is ba
on the mismatch between the reference signal and its re
structed counterpart. Another one can be established in te
of the eigenvalue, i.e., the optimization should be achie
when the error function, which is defined as
-
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E5U 1

cos~wt!
2S l ref

l̄ ref
D U, ~22!

can be minimized. Here (l ref /l̄ref) are the corresponding ei
genvalues ofM 8M̄ 821 for the reference signal.

Obviously, the reference signal is crucial to SPARS. It
urgent to set up an efficient procedure to derive the refere
signal. Since we have shown that a noncorrelated refere
signal could not provide further improvement, we shou
take a sine signal with the least correlation to the detec
signal. This is to avail ourselves of the advantage sugge
by the perturbation analysis. Also, as suggested by the
lytical result, we have numerically verified that it is not wis
to choose the frequency components outside the spec
range of the detected signals, since they usually do not p
the double check criteria listed below. Thus, practically,
set the range of frequency for searching for the refere
signal, it would be useful to take a power spectrum on
detected signals first. The recipe for the SPARS method i
follows.

~1! Perform a power spectrum analysis on the detec
signals to determine the spectrum region.

~2! Take a sine signal whose frequency is within the
gion and calculate its cross-correlation to the detected
nals.

~3! Choose the least-correlated sine signal as the re
ence.

~4! After the separation, run a double check on the co
currence of minima in the reference mismatch and er
function to ensure the correctness of the chosen delay ti

On the other hand, as may have been expected from Eq.~18!,
where the reference amplitudea vanishes, the amplitude o
the reference signal is found to be not so important. Thus
can simply choose the reference amplitude with the sa
order as the detected signal. We will provide numerical s
port in the following sections.

V. NUMERICAL SETTINGS OF SIMULATION
EXPLORATION

Before presenting the numerical results, let us first qu
tify the degree of success for a separation ofn source signals.
We defineD j as the difference between the maximum a
the minimum of the original signalaj (t). To evaluate the
mismatch per unit time interval, we perform a long tim
average of the absolute difference between the separ
signal ai8(t) and the original signal aj (t), i.e.,
^uai8(t)2aj (t)u&5(1/T)*0

Tuai8(t)2aj (t)udt, whereT should
be long enough. The minimum mismatch of the reco
structed signalsai8(t), namedd i , is defined as the minimum
of d i , j5^uai8(t)2aj (t)u&/D j , where j 51,2,...,n. This
method of definition is necessary because in practice
need to compare each reconstructed signal with all sou
signals to identify the correspondence. Finally, we can qu
tify the average degree of mismatch for the whole separa
in a unit time interval by definingd5(1/n)( i 51

n d i where a
normalized intensity scale has been used.

Next, we define some notations used in the paper.
source mismatchd is for the sources we hope to separa
based on the MS scheme. On the other hand, for SPARS, w
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use a different kind of symbolds for the source mismatch
which here means only that the sources we hope to sep
are employed to calculated the mismatch. The mismatc
reference signal is not included. In the meantime, the m
match between the reference signal and the reconstru
signal, which is close to the reference signal, is defined
d r .

For the numerical testing presented in this paper, the m
ing coefficient matrix is given as

C5S 1.0 0.9

0.7 1.0D ,

like that in Ref.@11#, and we also setB51. We note that a
different choice of mixing coefficient matrix does not chan
the general features reported below. In simulation, we e
ployed a fourth-order Runge-Kutta algorithm to integrate
differential equations. Usually, the time step is 0.01 and
data length for evaluation is, on average, 20 000. All d
sets used here are taken after the transient, and the mea
the data sets have been shifted to zero.

VI. NUMERICAL EXPLORATION WITH SIMPLE,
KNOWN SIGNALS

A. The influence of data length

The zero-mismatch property in the MS scheme is a
markable achievement. As shown above, a violation of
tistical independence between the source signals leads
breakdown of this unique property. Here, we will demo
strate that data length also affects this property greatly.

For simple illustration, let us take the source signals to
a1(t)5sin(17t) and a2(t)5sin(19t). Thus, in principle,
there is no cross-correlation between the source signals
comparison, we use two different data lengths, 20 000
160 000. As shown in Fig. 1, the separation performa
changes ast is varied while a longer data length reduces t
mismatch. One can expect that unless the separation co
tion is violated, the zero-mismatch property will be m
when the data length is infinite. Here the divergence or
nates from detM̄50 ast5(n11/2)p/v, wherev517 and
19, andn51,2,... . We should emphasize that since the av
able data length is always finite, differentt’s lead to different
separation performance. The effect of finite data length
also inevitable in the SPARS method. However, as will
shown below, one can still deduce an optimal time delay
source separation in SPARS, and thus the influence of fi
data length can be effectively removed.

FIG. 1. Source mismatchd versus the delay timet for different
data lengths.
ate
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B. The influence of cross-correlation

To illustrate the influence of cross-correlation on sign
separation, let us take the source signals to bea1(t)
5sin(17t)1b sin(19t) and a2(t)5sin(19t), and choose
aref(t)5sin(23t). The signals to be separated areI 18(t)
5I 1(t)1aref(t), I 28(t)5I 2(t)1aref(t), and I 38(t)5aref(t).
We construct the matrix Mi j 5^I i8(t)I j8(t)& and M̄ i j

5^I i8(t)I j8(t1t)&, wherei , j 51,2,3, and solve the eigenvec
tors of the matrixMM̄ 21. The cross-correlation between th
sources is

^a1~ t !a2~ t1t!&

A^a1
2~ t !&A^a2

2~ t !&
5

b

A11b
cos~wt!

andw519. By settingb50.0, 0.01, and 0.1, the influence o
nonzero cross-correlation can be explored. Again, we fi
present the source mismatch obtained by the MS schem
Fig. 2~a!. The cross-correlation is presented in Fig. 2~b!. One
can see that as the statistical independence is impro
~cross-correlation is small!, there is more of a chance t
achieve a better separation. This feature is also true
SPARS, as shown in Fig. 3. Unlike in Fig. 2~a!, there appear
more divergence~discontinuity! points for SPARS due to the
introduction of the reference signal. On the other hand,
ferring to Figs. 3~b! and 3~c!, the reference mismatch and th
error function remain unchanged as the cross-source cor
tion b varies. This is because the cross-correlation betw
source and reference signals is zero.

Next, we consider the situation in which the referen
signal is correlated to the source signals. Let us take a
ferent reference signal,aref(t)5sin(11t), to show the gener-
ality. We also takea1(t)5sin(17t)1b sin(11t) and a2(t)
5sin(19t). Again, we takeb50.0, 0.01, and 0.1 to explore
the influence of this finite correlation. The results are sho
in Fig. 4. One can see that a strong cross-correlation betw
the reference and source signals results in a failure of sig
separation. Please note that the variation feature remains

FIG. 2. ~a! Source mismatchd versus delay timet for two
source signals whose forms are sine.~b! Cross-correlation of source
signals.
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changed in the error function. Thus the concurrence of
local minima at the samet for the reference mismatch an
the error function completely disappears when the refere
signal is strongly correlated to the source signals. This
useful result. We can use this property as a double chec
the correctness of separation performance.

FIG. 3. ~a! Source mismatchds versus delay timet for two
source sine signals in which different correlation coefficientsb are
used.~b! Reference mismatchesd r . ~c! Error functionE. The origi-
nal source signals are the same as those used in Fig. 2.

FIG. 4. ~a! Source mismatchds versus delay timet for two
source sine signals with different correlation coefficientb. ~b! Ref-
erence mismatchesd r . ~c! Error functionE.
e

ce
a
of

VII. NUMERICAL EXPLORATION WITH COMPLEX
SIGNALS

A. Separation of mixed chaotic signals

In this section we will treat complex time series to give
further illustration of SPARS. Instead of the sound sign
used in Ref.@11#, here we take a chaotic signal@14# as a
notable extension. These signals are deterministic, but t
spectra are broadband which could not be separated sim
with a filter.

We first choosea1(t) anda2(t) the z components of the
Lorenz model with different values ofr, i.e., dx/dt
510.0(x2y), dy/dt5rx2y2xz, dz/dt5xy22.66z,
wherer 528.0 and 29.0, respectively. As shown in Fig. 5~a!,
there are gaps in the line and this indicates that the mism
could not be evaluated in some regions. This is due to
fact that the separation conditions are violated—mainly,
eigenvalues ofMM̄ 21 are not real. This surely shows tha
separation no longer works for any arbitraryt. Furthermore,
the mismatchd varied with time delayt. Again, this clearly
shows that zero mismatch does not hold in this case and
reason is the cross-correlation is not zero as shown in
5~b!. For the SPARS method, we employ the same data
used in Fig. 5~a! and mingle the detected signalsI 1(t) and
I 2(t) with a reference signalaref(t)531 sin(17t). Referring
to Fig. 6, one can see that the separation performance o
MS scheme is faithfully reproduced by SPARS at the lo
minima. The location of the time delay at the local minim
for all three kinds of mismatch, i.e.,d, ds , andd r , and the
error functionE are closely matched. It can be seen that
values ofd andds are almost the same when the time dela
t are located at the minima of the error function. On t
other hand, the source mismatchesd and ds show different
variation behavior as thet moves away from the minima. In
this case, the performance of SPARS is comparable to tha
the MS scheme at the local minima. Let us examine m
closely the role played by the reference signal, since in pr
tice this is the only known ‘‘source’’ we have. The concu
rence of local minima inE andd r at the samet is expected,
as analytically discussed in Sec. II. By this concurrence p

FIG. 5. ~a! Source mismatchd versus delay timet for the mixed
chaotic signals.~b! Cross-correlation of source signals.
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4878 PRE 58KO, HO, CHERN, HSU, AND WANG
tern we can deduce the optimal time delay for the sig
separation. As shown in Figs. 5 and 6, this delay timet also
leads to an optimum separation, since the source mismat
close to the minimum.

Let us consider another example where the source cr
correlation is smaller. This time we consider a separation
two mixed signals, one from thez component of the Lorenz
chaos wherer 528.0 and the other from thez component of
the Rossler chaos,dx/dt52(y1z), dy/dt5x10.2y,
dz/dt50.41(x2b)z with b55.7. We first present the resu
derived based on the MS scheme and the statistical inde
dence check in Fig. 7. One can see that the cross-correla
is much smaller in comparison with the above examp
However, differentt’s still lead to different separation per
formances and the variation ind can be significant. Again
the zero-mismatch property does not hold. Next, we pres
the SPARS analysis. We take the reference signal to
23 sin(17t). As shown in Fig. 8, the location of time delay
for the local minima ofds , d r , andE are almost the same
This is further typical numerical evidence of the concurren
feature. Again, this emphasizes the advantage of SPAR
dealing with finite cross-correlation. Meanwhile, the ‘‘glo
bal’’ minimum of the error function, labeled by a down a
row as shown in Fig. 8, provides us with a very good sou
mismatch while the local minima of the reference misma
are almost the same and do not provide us with more us
information.

B. Further investigation of the location of minimum

The exact location of the minimum influences the estim
tion of time delay and the separation performance. For
error function, the location of the minimum depends on
distribution of the numerically calculated eigenvalue. On
other hand, for the reference mismatch, the location depe

FIG. 6. ~a! Source mismatchds versus delay timet for the data
set used in Fig. 5 with reference signal 31 sin(17t). ~b! Reference
mismatchesd r . ~c! Error functionE. The data set is the same a
that used in Fig. 2.
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on the reconstructedC3 j ( j 51,2,3) in the case of mixing
two source signals. The eigenvalue will be calculated fi
and then the elements of the eigenvector matrixCi j . Thus it
is expected that the error function is more robust as the
erence signal changes. This matches numerical results.

The exact location of a minimum depends on the reso
tion of t and a higher resolution int gives a better estimation
of the minimum. We term the minimum with a better es
mation the ‘‘global’’ minimum. However, we should addre
this point more carefully, since the error functionE is the
absolute value of the difference between the exact and
numerically calculated eigenvalues. The distribution of t
numerically calculated eigenvalue becomes critical. Ma
ematically, if the reference signal is perfectly statistica

FIG. 7. ~a! Source mismatchd versus delay timet for the mixed
chaotic signals.~b! Cross-correlation of source signals.

FIG. 8. ~a! Source mismatchds versus delay timet for data set
used in Fig. 7 with reference signal 23 sin(17t). ~b! Reference mis-
matchesd r . ~c! Error functionE.
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independent of the source signals, then, after solving the
genvalue, the corresponding eigenvalue of the reference
nal should be exactly equal to 1/cos(vt). However, in our
recipe, the reference signal should be weakly correlate
the source signals. Thus, one can expect the error functioE
to be close to zero. It is numerically found that the er
function can be close to zero and, furthermore, cos(vt)'1,
as shown in Fig. 8~c!. Thus the minimum of the error func
tion E occurs att5kp/v (k51,2,...). Although one can
deduce the location of the minimum for the error functionE,
the location of the minimum for the reference mismatch
mains undetermined.

C. Practical deduction of the reference signal

We should note that an arbitrarily chosen reference sig
does not imply that it has to be a good reference signal. H
we illustrate the influence of the reference signal in the c
of complex time series. First, let us evaluate the correla
sum Cs5u^I 1(t)aref(t)&u1u^I 2(t)aref(t)&u, where aref(t)
5a sin(wt) anda523, for differentw and the source signal
are the same as those used in Fig. 7. As a typical example
us address the separation of two different frequencies.
shown in Fig. 9, the correlation sum has a higher value
w58 and a lower value atw517. For these cases, the sour
mismatches are significantly different. One can see that
frequency component with least correlation to the source
nals has a better separation performance, as shown in
10. Furthermore, in the case of low correlation, the conc
rence feature of local minima at the samet can be identified
while this identification is difficult for the high correlation.

It is important to examine more closely the influence
the amplitudea. Let us still use the above example as
illustration. Let us first look at Fig. 11, where the frequen
w517 is a good reference signal. As expected from the a
lytical result, the source mismatch remains the same for
ferent values ofa. However, the reference amplitude affec
reference mismatch whena is small. In contrast, there i
almost no change in the pattern of the error functionE. This
again gives us one more numerical support and the con
rence of local minima at the samet is a nice criterion. It is
worthwhile to compare the case ofw58, which is not a
good reference signal. As shown by Fig. 12, the feat
shown in Fig. 11 remains: the amplitudea is not a critical
parameter.

Please note that the reference signal with multiple f
quencies can also be used. Let us takearef(t)5a1 sin(w1t)
1a2 sin(w2t) as an example. In such a case, the@cos(wt)#21

in the error function should be replaced by (a1
2

FIG. 9. Cross-correlation between source signals and refer
signal versus frequency of the reference signal.
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1a2
2)/@a1

2 cos(w1t)1a2
2 cos(w2t)#, which is more compli-

cated. But, the silent feature of the error function, i.e., ind
pendence of the reference amplitudea, disappears, as show
in Fig. 13, where two differenta2 are presented andw1
517 andw2512.

It is also possible to use multiple reference signal ch
nels. Again, the analysis is more complicated and a sepa
error function is needed for every additional reference ch

ce

FIG. 10. ~a! Source mismatch,~b! reference mismatch, and~c!
error function for the mixed signals used in Fig. 7 with differe
reference signals.

FIG. 11. ~a! Source mismatch,~b! reference mismatch,~c! error
function for the mixed signals used in Fig. 7 with differe
reference amplitude; here the reference isa sin(17t) and a is the
amplitude.
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nel. From numerical simulations, we learn that this extens
offers no additional advantages, as shown in Fig. 14, wh
the separation performances of the MS scheme, SPARS
one reference channel, and SPARS with two reference c
nels can be seen.

FIG. 12. ~a! Source mismatch,~b! reference mismatch,~c! error
function for the mixed signals used in Fig. 7 with different refe
ence amplitude; here the reference isa sin(8t) anda is the ampli-
tude.

FIG. 13. ~a! Source mismatch,~b! reference mismatch, and~c!
error function for the mixed signals used in Fig. 7 with a referen
signala1 sin(17t)1a2 sin(12t) whosea1 anda2 are different.
n
re
ith
n-

VIII. INFLUENCE OF CHANNEL NOISE ON SIGNAL
SEPARATION

In signal detection, channel noises are unavoidably e
bedded, and the influence on signal separation should be
dressed. Without restriction, we can take the detected sig
as I i8(t)5I i(t)1h i , whereh i is the added channel noise
the i th detector. To simplify the discussion, we assume
sources are statistically independent and the channel no
are colored, i.e.,

^h i~ t !h j~ t1t!&5
D

tc
expS 2t

tc
D d i j 5D f ~t!d i j , ~23!

where D denotes the noise intensity,tc is the correlation
time, andf (t)5(1/tc)exp@2t/tc#. It is reasonable to assum
the noises are not relative to the sources such that

^h i~ t !aj~ t8!&5^ai~ t !h j~ t8!&50. ~24!

Next, with channel noise and the new matricesMi j8

5^I i8(t)I j8(t)& andM̄ i j8 5^I i8(t)I j8(t1t)& it follows that

M 85M1D f ~0!U, M̄ 85M̄1D f ~t!U. ~25!

Therefore, M 82D f (0)U5CLCT and M̄ 82D f (t)U
5CL̄CT, whose inverse is @M̄ 82D f (t)U#21

5(CT)21L̄21C21. Thus

@M 82D f ~0!U#@M̄ 82D f ~t!U#21C5C~LL̄21!.
~26!

Furthermore,

@M̄ 82D f ~t!U#215
1

M̄ 82D f ~t!U

5M̄ 821@U1D f ~ t !M̄ 8211O~D2!#.

~27!

After some algebra, it can be shown that

M 8M̄ 821C5C~LL̄21!„U1D$L̄L21C21~CT!21

3@ f ~0!2 f ~t!#L̄21%1O~D2!…. ~28!
e

FIG. 14. Data set is the same as Fig. 7. Bold solid line is
performance of the MS scheme. Solid line is the performance of
SPARS method with one reference channel. Dashed line is the
formance of the SPARS method with two reference channels.
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Again, one can see that if the noise strengthD is too strong,
the MS scheme will fail, and so does the SPARS meth
Therefore low-noise detectors are needed to ensure the
ability of signal separation.

Let us use the original data set of Fig. 7 with an additi
of noise. Instead of colored noise, we take the noises
being a randomly, independently, and uniformly genera
form @2D,D#. For comparison, we takeD50.23, 2.3, and
23, which are roughly 1%, 10%, and 100% of the intensity
the detected signals, respectively. We first show its influe
on the MS scheme. As expected, the separation perform
gets worse as the noise intensity increases, as shown in
15.

Next, let us treat SPARS. For a typical example, we ta
the reference signal as 23 sin(17t). As expected, the nois
affects the separation performance of SPARS. Higher n
intensity causes a worse source mismatch, though the r
ence mismatch and the error function are almost the sam
shown in Fig. 16. Again, it is worthwhile to note that th
reference amplitude has no influence on limit of source m
match. As an example, we take reference signal 230 sin(t)

FIG. 15. Source mismatch versus delay time obtained base
the MS scheme with different detective noise levelD. Data set is
the same with Fig. 7.

FIG. 16. Data set of Fig. 7 is separated with SPARS for diff
ent noise levelD. ~a! Source mismatch.~b! Reference mismatch.~c!
Error functionE.
.
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~dashed line! and recalculate the separation performance
SPARS. The result is shown in Fig. 17. The lower bounds
source mismatch are almost the same.

IX. CONCLUSIONS

The blind source separation based on the MS schem
physically appealing and the whole problem can be redu
to an eigenvector problem elegantly. However, in pract
two important factors—source cross-correlation and d
length—can seriously hinder the separation performanc
the MS method and they were left unsolved. We emphas
that finite source cross-correlation is inevitable when
spectra of the sources are overlapping and this source c
dependence is hardly justified in advance. In the meanti
the data length in practical analysis is always finite. A
though these difficulties also occur with the other methods
blind source separation@4,10#, extensive development an
implementation has been achieved for these noneigenv
problem schemes@4,10#. In contrast, to our knowledge, n
practical implementations and/or devices have been de
oped for the MS scheme@15#. As seen above, even wit
finite data length and source cross-correlation, the separa
can still be carried out for the MS scheme. But the probl
is that there are too many available time delayst for sepa-
ration. This turns out to lead to a serious optimization pro
lem. This problem actually had remained an unsolved di
culty in applications with the MS scheme. We shou
mention that in the work of Molgedey and Schuster, they h
introduced an idea of cost function@1#. This cost function
approach can be combined with the eigenvalue problem
proach for solving the separation problem with correla
signals as shown in Ref.@12#.

As shown above, with the use of a carefully chosen r
erence signal, one can find an operationally availablet to
separate the mixed signals with an optimum minimum m
match for the reconstructed signals and the original sour
It should be emphasized that the eigenvalue problem
proach is still without any cost function. We have provided
heuristic illustration to show its reliability. Furthermore, o
simulations strongly support its extension to different mod
and larger system size , though we do not present the
merical details here. The influences of nonzero cro
correlation, finite data length, and channel noise on sig
separation have been extensively analyzed. It has b
shown that in the worst case all these factors—cro

on

-

FIG. 17. Data set of Fig. 7 is separated with SPARS for
same noise levelD52.3. Solid line is the performance of referenc
signal 23 sin(17t). Dashed line is the performance of reference s
nal 230 sin(17t).
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4882 PRE 58KO, HO, CHERN, HSU, AND WANG
correlation, data length, and channel noise—can destroy
possibility of separation and result in failure. On the oth
hand, with finite data length, if the cross-correlation is not
strong and the channel noise is small, the separation prob
will lead to an optimization problem, and it is solvable by t
SPARS method as shown above. Nevertheless, we sh
report our results of the strong correlation case, although
strong correlation, the separation performance of SPAR
better than that of the MS scheme. It turns out that the p
formance is poor, unfortunately.

Essentially, our result shows that if we can tune the f
quency such thataref8 →aref , A8→S21A automatically holds
after solving for the eigenvectors. Is it possibleA8→S21A
→A1O(«2) or even betterfor the chosent ? Our analysis
shows that a perfectly noncorrelated reference signal d
not provide this improvement. However, with a referen
signal that has the least correlation to the detected sign
improvement is possible. With this approach it is possible
achieve a better separation performance in comparison
re
he
r
o
m

ld
in
is
r-

-

es

ls,
o
ith

the MS scheme, particularly in the case where source cr
correlation is not weak. At this stage, the optimum separa
performance achieved by SPARS is only with numeri
supports. Nevertheless, it is worthwhile to call attention
this intuitive approach. This approach has pointed out a p
sible path toward a better solution in the field of blind sign
separation. It is worthwhile to emphasize that practi
implementation of optimization is straightforward. The op
mization of blind source separation demonstrated h
should have a rather positive meaning. Extensions to ca
where the number of sources is unknown and experime
implementation to optical signal separation where interf
ence may be important are currently in progress.
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