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Information flow and nontrivial collective behavior in chaotic-coupled-map lattices
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This work quantitatively demonstrates a nontrivial collective behavior, which depends on the coupling
strength in chaotic-coupled-map lattices, using the interdependence measure emerging from a local unit. The
amount of information flow which flows from the instantaneous mean field to a local map has been investi-
gated using the time-delayed mutual information. Interestingly, the collective system’s behavior is found to be
associated with the amount of information flow. As mentioned above, both methods can effectively display the
nontrivial collective behavior and the amount of information flow.
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I. INTRODUCTION

Chaotic-coupled-map lattices are highly complex and
hibit various phenomena. They are therefore often used
typical models for investigating the characteristics of r
spatiotemporal systems, such as the phenomena of coo
tion in many extended chaotic dynamical systems@1#. Re-
cently, many researchers have sought to understand the e
gence of nontrivial collective behavior~NTCB! in chaotic-
coupled-map lattices@2,3#. In particular, Cisneroset al.
presented an important advance in understanding NTCB@3#
with reference to coupled maps, such as regular Euclid
lattices @2,4#, one-dimensional locally coupled-map lattic
@5#, fractal geometries@6#, and globally coupled-map net
works @7–10#. This study characterizes NTCB using the i
terdependence measure emerging from a local unit@11#, and
the amount of information flow which flows from the insta
taneous mean fieldhn to a local mapxn11

i using the time-
delayed mutual information@12#. The relationship between
NTCB and information flow is examined. Both methods c
effectively quantify NTCB and the amount of informatio
flow, respectively.

The rest of this paper is organized as follows. Section
presents various models of chaotic coupled map lattices.
tion III then describes a measure used to quantify the col
tive dynamics of a system. Section IV investigates the re
tionship between nontrivial collective behavior and t
amount of information flow. Section V draws conclusions

II. MODELS OF CHAOTIC-COUPLED-MAP LATTICES

This section presents four models of chaotic-coupled-m
lattices, which are used throughout this paper. The first
examples refer to global coupled-map systems, defined

xn11
i 5~12«! f i~xn

i !1
«

N (
j 51

N

f j~xn
j !, ~1!

where the functionf i(xn
i ) denotes the local dynamics of e

ementi and« represents the coupling strength. The first e
ample is of the homogeneous, globally coupled-map s
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tems, of which all elements exhibit the same local functio
such thatf i(xn

i )5 f (xn
i ). Local dynamics are achieved usin

the logarithmic mapf (x)5b1 lnuxu, whereb is a real param-
eter. This map differs from the standard classes of univer
ity of unimodal or bounded maps. Specifically, the behav
of this map does not have periodic windows or separa
chaotic bands in the intervalbP@21,1#. In the second ex-
ample, heterogeneity of the local dynamics in Eq.~1! is in-
troduced withf i(xn

i )5bi1 lnuxn
i u, where the parametersbi are

distributed in @21,1#. The third example is of the one
dimensional, homogeneous, diffusively coupled logarithm
map lattices, given by

xn11
i 5~12«! f ~xn

i !1
«

2
@ f ~xn

i 21!1 f ~xn
i 11!#, ~2!

where the boundary conditions in Eq.~2! are periodic. The
three above-mentioned examples are the same as in Ref@3#,
and an additional example is presented to demonstrate
advantages of the proposed methods. The form of the fi
example is the same as that of Eq.~1!; however, the local
dynamic is replaced by a tent mapf (x)5a(12uxu), which
also exhibits nontrivial collective behavior@13#. Setting a
51.5 makes this map chaotic. The collective system beh
ior is defined as

An5
1

N (
j 51

N

xn
j , ~3!

and the instantaneous mean field is given by

hn5
1

N (
j 51

N

f j~xn
j !. ~4!

The following section uses the above four models to de
onstrate how the interdependence measure quantitatively
scribes the nontrivial collective behavior.

III. METHOD OF INTERDEPENDENCE

This section introduces a method for quantifying the c
lective behavior of a system. First, the concept of interdep
dence measure is briefly described@11#. Assume that two
simultaneously measured, univariate time series exist, f
©2003 The American Physical Society14-1
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which m-dimensional delay vectorsxn5(xn , . . . ,xn2m11)
and yn5(yn , . . . ,yn2m11), n51, . . . ,N can be con-
structed. Then, letl n, j , j 51, . . . ,k denote the time indices
of the k closest neighbors ofxn . For eachxn , the squared
mean Euclidean distance to itsk neighbors is defined as

Rn
(k)~X!5

1

k (
j 51

k

~xn2xl n, j
!2. ~5!

The corresponding time indices of the k closest neighbor
yn are termedsn, j . Then theY-conditioned squared mea
Euclidean distance is defined by

Rn
(k)~XuY!5

1

k (
j 51

k

~xn2xsn, j
!2. ~6!

If the systems are strongly correlated, thenRn
(k)(XuY)

'Rn
(k)(X) is expected, while if they are independent, th

Rn
(k)(XuY)@Rn

(k)(X) is expected. Accordingly, a measure
dependence such as

S(k)~XuY!5
1

N (
n51

N Rn
(k)~X!

Rn
(k)~XuY!

~7!

can be defined, which takes values from almost 0 for in
pendent systems to 1 for strongly dependent and iden
systems. A measure with similar properties is

H (k)~XuY!5
1

N (
n51

N

ln
Rn~X!

Rn
(k)~XuY!

, ~8!

where Rn(X)5(N21)21( j Þn(xn2xj )
2. H differs from S

only in the use of the conditional distance rather than
mean distance to all other points and the use of the nat
logarithm. Both quantities have been proven to be usefu
real data applications and simple toy models.H (k)(XuY) is
considered useful here, since it is sensitive to weak dep
dencies.H (k)(XuY) is zero if X andY are completely inde-
pendent, and is positive if nearness inY also implies near-
ness inX for equal time partners. For identical system
H (k)(XuY) is just a high positive value, butS(k)(XuY)51.
Therefore,S(k)(XuY) is used as an auxiliary measure to e
amine the synchronized state.H (k)(XuY) would be negative
if close pairs inY were to correspond mainly to distant pai
in X. This situation is very unlikely but not impossible. Th
following section demonstrates the nontrivial collective b
havior of the three models introduced above by applying
interdependence measureH to both the collective behavio
An and a local mapxn

i .

A. Homogeneous, globally coupled logarithmic map lattices

First, the homogeneous, globally coupled logarithmic m
lattices are investigated. Figure 1~a! presents the bifurcation
diagram of the average stateAn as a function of coupling
strength«. The return maps ofAn are also demonstrated fo
different couplings in Fig. 2. However, Fig. 1~a! indicates
that different collective behaviors emerge as a function of
05621
of

-
al

e
al

in

n-

,

-
e

p

e

coupling strength«. A turbulent phaseT is observed in Fig.
2~a!, whereAn manifests as a fixed point, follows the sta
dard statistical behavior of uncorrelated disordered variab
collective periodic statesP @Fig. 2~b!#; collective chaotic
bandsC @Fig. 2~c!#; and chaotic synchronizationS @Fig.
2~d!#. Next, the interdependence measure is then used to
scribe different behaviors for different coupling strengths
Fig. 1~a!. The system size isN510 000 and the local param
eterb is fixed at zero for all maps. For each value of«, the
initial conditions are random, and the last 10 000 steps a
106 iterations are recorded. Figure 1~b! shows the interde-
pendence ofH(Anuxn

i ) vs « for k530. The embedding di-
mension wasm53 throughout this work, and was checke
by the false nearest neighbor method. Figure 1~b! clearly
reveals that the interdependence begins to increase a«c
'0.21 apparently, indicating a behavior characteristic o
first-order phase transition. At this critical value of couplin
the collective behavior of the system transfers turbul
states into periodic states, as observed in Fig. 1~a!. However,
Fig. 1~c! uses the method provided by Cisneroset al. to
quantify the NTCB in the first example. Comparing Fig
1~b! and 1~c! shows that Fig. 1~c! cannot distinguish clearly

FIG. 1. ~a! Bifurcation diagramAn vs « for homogeneous, glo-
bally coupled logarithmic maps withb50 and system sizeN
5104. Four different phases are observed: turbulent,T; periodic,
P; chaos bands,C; and synchronized,S. ~b! H(Anuxn

i ) vs « for this
system.~c! Average information flowMhn ,x

n11
i from hn to xn11

i ,

with r 50.2.
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FIG. 2. Return mapsAn11 vs An of the ho-
mogeneous, globally coupled logarithmic ma
for different coupling strengths.~a! «50 ~turbu-
lent phases!. ~b! «50.285 ~periodic states!. ~c!
«50.365 ~chaotic bands!. ~d! «50.435 ~chaotic
synchronization!.
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that at which critical coupling strength the nontrivial colle
tive behavior becomes a periodic or synchronous state,
such a value can be distinguished well in Fig. 1~b!. Then,
H(Anuxn

i ) gradually decreases to a minimum«'0.365 and
eventually reaches the highest fixed value@after «'0.435,
S(Anuxn

i ) equals to 1#, exceeding the value of periodic state
This phenomenon shows that periodic states become cha
then reaching to chaotic synchronization eventually. Fr
the above description, the time series of a single map
sufficient to predict reliably the average state evolution. A
cordingly, when the system exhibits periodic states or is
dergoing chaotic synchronization, a significant amount of
formation must flow from the collective dynamics to a
elements. The follwing section will discuss this characte
tic.

B. Heterogeneous, globally coupled logarithmic map lattices

This section discusses the heterogeneous, glob
coupled-map lattices. Figure 3~a! presents the bifurcation
diagram ofAn vs « for the heterogeneous, globally couple
logarithmic map lattices. In this case, the system size
10 000 and the local parameterbi is randomly distributed
within a certain range@21,1#. Notably, collective periodic
behaviors occur in certain windows of the coupling para
eter. Figure 3~b! displays the interdependenceH(Anuxn

i ) vs «
for k530. When«,0.035, the interdependence is small u
less«c'0.035 and then increases continuously for«.«c .
The increase in the interdependence resembles a phase
sition from turbulent states to collective periodic states.
05621
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nally, the interdependence begins to decrease, represe
the onset of chaotic states.

C. One-dimensional, coupled logarithmic
map lattices

The one-dimensional, coupled logarithmic map lattices
in Eq. ~3!, also display the nontrivial collective behavior, a
presented in Fig. 4~a!. The system size is also set to 10 00
and the local dynamics are homogeneous, withf (x)5b
1 lnuxu, where the local parameter is fixed atb520.8. In this
case, the system represents only a turbulent~statistical fixed
point! phase and a period-2 collective state@5#. Figure 4~b!
displaysH(Anuxn

i ) vs « for k530. Again, the interdepen
dence increases where the critical coupling strength va
«c'0.03, at which the transition occurs from turbulence
periodic collective states, is obtained. Ultimately, the va
of interdependence increases to a high value.

D. Homogeneous, globally coupled tent
map lattices

The homogeneous, globally coupled tent map lattices w
different nontrivial collective behaviors have been discuss
Figure 5~a! illustrates the bifurcation diagram ofAn vs « and
Fig. 6 displays the return maps ofAn for different coupling
strengths. The system size isN510 000 and the local param
etera is fixed at 1.5 for all maps. For each value of«, the
initial condition is random, and the last 10 000 steps after6

iterations are recorded. As in Sec. III A, four phase areas
4-3
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also observed: a turbulent phaseT @Fig. 6~a!#; collective pe-
riodic phasesP @Fig. 6~b!#; collective chaotic bandsC @Fig.
6~c!#; and chaotic synchronizationS @Fig. 6~d!#. The interde-
pendence measureH(Anuxn

i ), k530, is used to describe th

FIG. 3. ~a! Bifurcation diagramAn vs « for heterogeneous, glo
bally coupled logarithmic maps and system sizeN5104. ~b!
H(Anuxn

i ) vs « for this network. ~c! Average information flow
Mhn ,x

n11
i from hn to xn11

i , with r 50.2.

FIG. 4. ~a! Bifurcation diagramAn vs « for one-dimensional,
locally coupled logarithmic maps withb520.8 and system size
N5104. ~b! H(Anuxn

i ) vs « for this lattice.~c! Average information
flow Mhn ,x

n11
i from hn to xn11

i , with r 50.2.
05621
different behaviors for different coupling strengths@Fig.
5~b!#. After «c'0.055, the interdependence increas
abruptly, indicating that the collective behavior of the syste
transfers turbulent states more apparently. Then, the inte
pendence decreases to a minimum«'0.275 and increases t
the highest fixed value finally, specifying that the collecti
behavior of the system has become chaotic, and this lead
chaotic synchronization in the end@after «'0.335 is
reached,S(Anuxn

i ) equals to 1#.
As mentioned above, interdependence could be a too

studying NTCB in chaotic-coupled-map lattices. The follow
ing section discusses the relationship between collective
havior and information flow from the mean fieldhn to a local
mapxn11

i .

IV. INFORMATION FLOW FROM THE MEAN FIELD
TO A LOCAL MAP

Numerous authors have used mutual information to qu
tify the overlap of information contents of two time serie
Unfortunately, mutual information includes neither dynam
cal nor directional information. Consequently, introducing
time delay into one of the observations is important@12#. The
basic conceptions of information theory are briefly recal
here. Two time series are assumed to exist, namely,I andJ.
The mutual information shared by measurei, drawn from a
set I5$ i %, and measurej, drawn from a setJ5$ j %, is the
amount learned by the measure ofi about measurej. Ex-
pressed in bits, this mutual information is

FIG. 5. ~a! Bifurcation diagramAn vs « for homogeneous, glo-
bally coupled tent maps and system sizeN5104. ~b! H(Anuxn

i ) vs «
for this network.~c! Average information flowMhn ,x

n11
i from hn to

xn11
i , with r 50.2.
4-4
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FIG. 6. Return mapsAn11 vs An of the ho-
mogeneous, globally coupled tent maps for d
ferent coupling strengths.~a! «50 ~turbulent
phases!. ~b! «50.19 ~periodic states!. ~c! «
50.26 ~chaotic bands!. ~d! «50.335 ~chaotic
synchronization!.
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log2

p~ i , j !

p~ i !p~ j !
, ~9!

wherep( i , j ) denotes the joint probability density for me
suresI andJ, resulting in valuesi andj. Moreover,p( i ) and
p( j ) are the individual probability densities for the measu
of I andJ. If the measure of a value fromI resulting ini is
completely independent of the measure of a value fromJ
resulting inj, thenp( i , j ) factorizes top( i , j )5p( i )p( j ). In
this case~the amount of information shared by the two me
sures!, namely, the mutual information is zero, as it shou
be. The average of this information for all measures is ca
the mutual information between theI andJ measures, and is
expressed as follows:

MIJ5(
i , j

p~ i , j !log2

p~ i , j !

p~ i !p~ j !
, ~10!

which is the well known formula for the mutual information
Here and in the following, the summation index and the s
script of the probabilities specifying the process were om
ted. Notably,MIJ is symmetric under the exchange ofI and
J and thus does not contain any directional sense. For
reason, mutual information must be introduced for a time
in either one of the variables to obtain a directional sen
e.g.,

MIJ~t!5( p~ i n , j n2t!log2

p~ i n , j n2t!

p~ i !p~ j !
. ~11!
05621
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The transition probabilities are used here rather than
static probabilities to incorporate the dynamical structu
given by

pr~xn ,yn!5
1

N (
n8

QS r 2Uxn2xn8

yn2yn8
U D . ~12!

Moreover, the correlation functionQ(x.0)51; Q(x<0)
50 is used. Notably, the normu•u represents the maximum
distance. Different overall scales ofI and J must be ac-
counted for by using appropriate weights. Dynamically c
related pairs should be excluded as usual. The time-dela
mutual information, with appropriate weights being em
ployed to keephn andxn11

i in the range@22,2#, is used to
obtain information flow from the mean fieldhn to a local
mapxn11

i . Figure 1~d! presents the average information flo
as a function of coupling in the homogeneous, globa
coupled-map lattices. Correlation sums atr 50.2 were used
to calculate the transition probabilities throughout this wo
and neighbors closer in time than 100 iterations were
cluded from the correlation function. A total of 10 000 iter
tions of two time serieshn andxn11

i was recorded after 106

steps. A change in the amount of the average informa
flow from the mean fieldhn to a local mapxn11

i can be seen
at a critical value of the coupling,«c'0.21, which is similar
to the interdependence measure. At other coupling streng
the tendencies are similar to that in Fig. 1~b!, and the points
of phase transition, such as the straight lines, are matche
both Figs. 1~b! and 1~d!. Figure 3~c! plots the average infor-
4-5



a-
s
is

as
r

he
di

s
ur
o

ig

CB
w

to
on-
e-
than

ayed
of

tion
th,

be-
s-

ce
-

M.-C. HO AND F.-C. SHIN PHYSICAL REVIEW E67, 056214 ~2003!
mation flow vs« in heterogeneous, globally coupled log
rithmic map lattices. The other conditions are the same a
Fig. 1~d!. A change in the value of the information flow
observed where coupling«c'0.035. Furthermore, once«c
.0.035 the values of the average information flow incre
continuously and then gradually decrease. This pattern
sembles that displayed in Fig. 3~b!. Figure 4~c! shows the
average information flow as a function of the coupling in t
one-dimensional, coupled-map lattices. The pattern
played in Fig. 4~c! increases continuously after coupling«c
'0.03 and stays at high values after«c.0.03, as in Fig.
4~b!. Finally, Fig. 5~c! plots the average information flow v
« in homogeneous, globally coupled tent map lattices. Fig
5~c! clearly shows an abrupt increase in the amount of inf
mation flow after coupling strength«c'0.055, and reaching
the highest value eventually after«'0.335, as in Fig. 5~b!.
Other tendencies are matched well, such as three stra
lines in Fig. 5~b!.

From the above, we believe that the change in NT
must be closely related to the amount of information flo
which flows from the instantaneous mean fieldhn to a local
mapxn11

i .
f

o,
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V. CONCLUSION

This work has applied the interdependence measure
four systems, and has very effectively quantified the n
trivial collective behavior for each coupling. Numerical r
sults indicate that the interdependence measure is better
the method developed by Cisneroset al. for definitely differ-
entiating among phase areas. Furthermore, the time-del
mutual information was used to investigate the amount
information flow from the mean fieldhn to a local map
xn11

i . The interdependence measure and the informa
flow display similar tendencies at every coupling streng
and both increase apparently after each critical coupling«c is
reached. Therefore, a strong relationship clearly exists
tween the amount of information flow and the collective sy
tem behavior.
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