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Information flow and nontrivial collective behavior in chaotic-coupled-map lattices
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This work quantitatively demonstrates a nontrivial collective behavior, which depends on the coupling
strength in chaotic-coupled-map lattices, using the interdependence measure emerging from a local unit. The
amount of information flow which flows from the instantaneous mean field to a local map has been investi-
gated using the time-delayed mutual information. Interestingly, the collective system’s behavior is found to be
associated with the amount of information flow. As mentioned above, both methods can effectively display the
nontrivial collective behavior and the amount of information flow.
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I. INTRODUCTION tems, of which all elements exhibit the same local function,
such thatf;(x;) = f(x;). Local dynamics are achieved using
Chaotic-coupled-map lattices are highly complex and exthe logarithmic may (x) =b+ In|x|, whereb is a real param-
hibit various phenomena. They are therefore often used aster. This map differs from the standard classes of universal-
typical models for investigating the characteristics of reality of unimodal or bounded maps. Specifically, the behavior
spatiotemporal systems, such as the phenomena of coopes-this map does not have periodic windows or separated
tion in many extended chaotic dynamical systeih Re-  chaotic bands in the intervéde[—1,1]. In the second ex-
cently, many researchers have sought to understand the ememple, heterogeneity of the local dynamics in ED.is in-
gence of nontrivial collective behavigNTCB) in chaotic-  troduced withf;(x;,) = b; +In|x, where the parametebs are
coupled-map latticeq2,3]. In particular, Cisnerosetal.  distributed in[—1,1]. The third example is of the one-

presented an important advance in understanding NI&}B  dimensional, homogeneous, diffusively coupled logarithmic
with reference to coupled maps, such as regular Euclideagmap lattices, given by
lattices[2,4], one-dimensional locally coupled-map lattices
[5], fractal geometrie$6], and globally coupled-map net- - o .
works [7—10]. This study characterizes NTCB using the in- Xpe1=(1—e)f(x 'n)+§[f(x'n H+fa ], ()
terdependence measure emerging from a local[ddit and
the amount of information flow which flows from the instan- where the boundary conditions in E@) are periodic. The
taneous mean fieltl, to a local mapx;,, ; using the time- three above-mentioned examples are the same as inRef.
delayed mutual informatiof12]. The relationship between and an additional example is presented to demonstrate the
NTCB and information flow is examined. Both methods canadvantages of the proposed methods. The form of the final
effectively quantify NTCB and the amount of information example is the same as that of E@); however, the local
flow, respectively. dynamic is replaced by a tent mdpx) =a(1—|x|), which

The rest of this paper is organized as follows. Section llalso exhibits nontrivial collective behavi¢f3]. Settinga
presents various models of chaotic coupled map lattices. See=1.5 makes this map chaotic. The collective system behav-
tion Il then describes a measure used to quantify the collecor is defined as
tive dynamics of a system. Section IV investigates the rela- N
tionship between nontrivial collective behavior and the 1 i
amount of information flow. Section V draws conclusions. =g 2 X

()

Il. MODELS OF CHAOTIC-COUPLED-MAP LATTICES and the instantaneous mean field is given by

This section presents four models of chaotic-coupled-map 1 N .
lattices, which are used throughout this paper. The first two ”:N Z j(xJn). (4)
examples refer to global coupled-map systems, defined as =

e The following section uses the above four models to dem-
Xp1=(1—g)fi(x in)+_ E fj(xL), ) onstrate how the interdependence measure quantitatively de-
N = scribes the nontrivial collective behavior.

where the functiorf;(x;,) denotes the local dynamics of el-
ementi ande represents the coupling strength. The first ex-
ample is of the homogeneous, globally coupled-map sys- This section introduces a method for quantifying the col-
lective behavior of a system. First, the concept of interdepen-
dence measure is briefly describghl]. Assume that two
*Electronic address: ho@mail.phy.nknu.edu.tw simultaneously measured, univariate time series exist, from

IIl. METHOD OF INTERDEPENDENCE
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which m-dimensional delay vectorg,=(X,, ... Xn—m+1) 5 (a)
and ¥o=(Yns - - ¥Yn-m+1)» N=1,...N can be con-
structed. Then, lek,;, j=1,... k denote the time indices ok

of the k closest neighbors of,,. For eachx,, the squared <
mean Euclidean distance to ksneighbors is defined as 5F
k T P c,_|s-
l _10 1 1 1 1
RO =1 2 (=, )% (5) 20 (®)

=1

The corresponding time indices of the k closest neighbors of
yn are termeds, ;. Then theY-conditioned squared mean
Euclidean distance is defined by

HA I )
o S

k
1
ROXY)=% 3 (s, )2 ©) 18 ©
kK= h 12t
If the systems are strongly correlated, th&ﬁk)(X|Y) é 08 |
~Rﬂ<)(X) is expected, while if they are independent, then “Wooa |
R%k)(X|Y)>R§1k)(X) is expected. Accordingly, a measure of 00 . L A
dependence such as . (d)
0.6
N Rk 2 -
R (X) 5
SHX|Y)=— > —1—— 7 = 04}
PR REX|Y) " i
*x 02
can be defined, which takes values from almost O for inde- < 0.0

pendent systems to 1 for strongly dependent and identical

systems. A measure with similar properties is 60 01 02 03 04 0S5

3
18 Ry(X) o
H(k)(X|Y)= — E In————, 8 FIG. 1. (a) Bifurcation diagramA,, vs ¢ for homogeneous, glo-
N 7=1 Rﬁk)(X|Y) bally coupled logarithmic maps witlh=0 and system sizéN
=10% Four different phases are observed: turbul@ntperiodic,
where R,(X)=(N—1) '3;.,(x,— %)% H differs from S P; chaos bands;; and synchronizeds. (b) H(A,|x}) vs & for this
only in the use of the conditional distance rather than thesystem.(c) Average information flowM hyx, from hy to Xpi1s
mean distance to all other points and the use of the naturglith r=0.2.
logarithm. Both quantities have been proven to be useful in
real data applications and simple toy mode#$¥(X|Y) is
considered useful here, since it is sensitive to weak depe ; . .
denciesH®(X|Y) is zero ifX andY are completely inde- 2(a), Whe_re_An mamfe_sts as a fixed pomt,_ follows the gtan-
pendent, and is positive if nearness¥nalso implies near- dard s'Fat|stlca_I be_haV|or of ungorrelated dlsorQered vanz_ibles;
ness inX for equal time partners. For identical systems,collective periodic state® [Fig. 2b)]; collective chaotic
H(k)(x|Y) is jUSt a hlgh positive value, bLS(k)(X|Y):1 bandsC [F|g 2(0)], and chaotic SynChrOl"\lzatlos [Flg
Therefore, SK(X|Y) is used as an auxiliary measure to ex- 2(d_)]. Next, the mterde_pendenc_e measure is then used to _de-
amine the synchronized statd(X|Y) would be negative scribe different behaviors for different coupling strengths in

if close pairs inY were to correspond mainly to distant pairs F19- 1(&- The system size i=10000 and the local param-

in X. This situation is very unlikely but not impossible. The &terb is fixed at zero for all maps. For each valuesofthe

following section demonstrates the nontrivial collective be-INitial conditions are random, and the last 10000 steps after

havior of the three models introduced above by applying ihd® iterations are recorded. Figurébl shows the interde-

interdependence measukkto both the collective behavior Pendence oH(Aq|xy) vs & for k=30. The embedding di-
A, and a local mapx' . mension wasn=3 throughout this work, and was checked

by the false nearest neighbor method. Figutb) Xlearly
reveals that the interdependence begins to increase. at
~0.21 apparently, indicating a behavior characteristic of a
First, the homogeneous, globally coupled logarithmic magfirst-order phase transition. At this critical value of coupling,
lattices are investigated. Figuréal presents the bifurcation the collective behavior of the system transfers turbulent
diagram of the average stafg, as a function of coupling states into periodic states, as observed in Fia.. However,
strengthe. The return maps ol are also demonstrated for Fig. 1(c) uses the method provided by Cisnereisal. to
different couplings in Fig. 2. However, Fig(a indicates quantify the NTCB in the first example. Comparing Figs.
that different collective behaviors emerge as a function of thel(b) and 4c) shows that Fig. (£) cannot distinguish clearly

rsz_oupling strengtte. A turbulent phasé is observed in Fig.

A. Homogeneous, globally coupled logarithmic map lattices
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that at which critical coupling strength the nontrivial collec- nally, the interdependence begins to decrease, representing
tive behavior becomes a periodic or synchronous state, buhe onset of chaotic states.

such a value can be distinguished well in Figb)1 Then,

H(An|x;) gradually decreases to a minimusm=0.365 and C. One-dimensional, coupled logarithmic

eventually reaches the highest fixed valadter e~0.435, map lattices

S(Anlx;,) equals to 1, exceeding the value of periodic states. . ] o ]

This phenomenon shows that periodic states become chaotic, 1N one-dimensional, coupled logarithmic map lattices, as

then reaching to chaotic synchronization eventually. Frond" Ed- (3), also display the nontrivial collective behavior, as
the above description, the time series of a single map ig)resented in Fig. @). The system size is also set to 10000,

fficient to oredict reliably the aver t volution. A and the local dynamics are homogeneous, Wit(‘x):o
sufficient to predict refiably the average state evolution. Ac +In|x|, where the local parameter is fixedat — 0.8. In this

cordingly, when the system exhibits periodic states or is un- o :
. . . L . _case, the system represents only a turbulstattistical fixed

dergoing chaotic synchronization, a significant amount of in- oint) phase and a period-2 collective st&. Figure 4b)

formation must flow from the collective dynamics to all P P P - F19

) i N . .
elements. The follwing section will discuss this characteris-g'Splay.SH(A“|X“) vs e for k—?p. Again, Fhe interdepen-
fic. ence increases where the_c_:rltlcal coupling strength value

£.,~0.03, at which the transition occurs from turbulence to
periodic collective states, is obtained. Ultimately, the value
of interdependence increases to a high value.

This section discusses the heterogeneous, globally
coupled-map lattices. Figure(88 presents the bifurcation
diagram ofA,, vs ¢ for the heterogeneous, globally coupled
logarithmic map lattices. In this case, the system size is
10000 and the local parametbr is randomly distributed The homogeneous, globally coupled tent map lattices with
within a certain rangé¢ —1,1]. Notably, collective periodic different nontrivial collective behaviors have been discussed.
behaviors occur in certain windows of the coupling param-Figure Fa) illustrates the bifurcation diagram &f, vs ¢ and
eter. Figure &) displays the interdependenkdA,|x;) Vs e Fig. 6 displays the return maps 8§, for different coupling
for k=30. Whene <0.035, the interdependence is small un-strengths. The system sizeNs=10 000 and the local param-
lesse.~0.035 and then increases continuously §or e . etera is fixed at 1.5 for all maps. For each value &f the
The increase in the interdependence resembles a phase tramitial condition is random, and the last 10 000 steps aftér 10
sition from turbulent states to collective periodic states. Fi-iterations are recorded. As in Sec. Ill A, four phase areas are

B. Heterogeneous, globally coupled logarithmic map lattices

D. Homogeneous, globally coupled tent
map lattices
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FIG. 3. (a) Bifurcation diagramA,, vs ¢ for heterogeneous, glo-
bally coupled logarithmic maps and system sike=10*. (b)
H(A,|xy) vs & for this network.(c) Average information flow
My, i fromhy to X\ .1, With r=0.2.

also observed: a turbulent phaggFig. 6(a)]; collective pe-
riodic phased [Fig. 6(b)]; collective chaotic band€ [Fig.
6(c)]; and chaotic synchronizatid®[Fig. 6(d)]. The interde-
pendence measute(A,|x;), k=30, is used to describe the
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FIG. 4. (a) Bifurcation diagramA,, vs ¢ for one-dimensional,
locally coupled logarithmic maps witb=—0.8 and system size
N=10" (b) H(A,|x}) vs & for this lattice.(c) Average information
flow My, X from h, to x;,,,, with r=0.2.
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FIG. 5. (a) Bifurcation diagramA,, vs & for homogeneous, glo-
bally coupled tent maps and system size 10%. (b) H(A,|x}) vse
for this network.(c) Average information ﬂOV\Mh X from h, to

X! 1, withr=0.2.

different behaviors for different coupling strengtiiBig.
5(b)]. After e.~0.055, the interdependence increases
abruptly, indicating that the collective behavior of the system
transfers turbulent states more apparently. Then, the interde-
pendence decreases to a minimam0.275 and increases to
the highest fixed value finally, specifying that the collective
behavior of the system has become chaotic, and this leads to
chaotic synchronization in the enfiafter £~0.335 is
reached S(A,|x;,) equals to 1

As mentioned above, interdependence could be a tool for
studying NTCB in chaotic-coupled-map lattices. The follow-
ing section discusses the relationship between collective be-
havior and information flow from the mean fieg to a local
mapxh. ;.

IV. INFORMATION FLOW FROM THE MEAN FIELD
TO A LOCAL MAP

Numerous authors have used mutual information to quan-
tify the overlap of information contents of two time series.
Unfortunately, mutual information includes neither dynami-
cal nor directional information. Consequently, introducing a
time delay into one of the observations is importdf]. The
basic conceptions of information theory are briefly recalled
here. Two time series are assumed to exist, nanhepdJ.
The mutual information shared by measurelrawn from a
setl={i}, and measurg, drawn from a setl={j}, is the
amount learned by the measure iodbout measurg. Ex-
pressed in bits, this mutual information is
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p(i,j) The transition probabilities are used here rather than the
|092m, 9 static probabilities to incorporate the dynamical structure,

given by

wherep(i,j) denotes the joint probability density for mea-

suresl andJ, resulting in values andj. Moreover,p(i) and 1

p(j) are the individual probability densities for the measures Pr(Xn,Yn) = N 2 6
of I andJ. If the measure of a value froinresulting ini is "
completely independent of the measure of a value ftbm ] ]
resulting inj, thenp(i,j) factorizes top(i,j)=p(i)p(j). In  Moreover, the correlation functio® (x>0)=1; @(X§O)
this casethe amount of information shared by the two mea-=0 is used. Notably, the norm | represents the maximum
sure3, namely, the mutual information is zero, as it shoulddistance. Different overall scales ¢fand J must be ac-
be. The average of this information for all measures is callegounted for by using appropriate weights. Dynamically cor-

the mutual information between theandJ measures, and is related pairs should be excluded as usual. The time-delayed
expressed as follows: mutual information, with appropriate weights being em-

ployed to keeph, andx,, , in the rangd —2,2], is used to
i obtain information flow from the mean field, to a local
p(i.j) : . ; .
(P (10 mapxp, ;- Figure 1d) presents the average information flow
as a function of coupling in the homogeneous, globally
o ) ) coupled-map lattices. Correlation sumsrat0.2 were used
which is the well known formula for the mutual information. g cajculate the transition probabilities throughout this work,
Here and in the following, the summation index and the subyq neighbors closer in time than 100 iterations were ex-
script of the probabilities specifying the process were omit|,ded from the correlation function. A total of 10 000 itera-
ted. Notably,M,; is symmetric under the exchangelodnd  ions of two time seried, andx! ., was recorded after £0

J and thus does not contain any directional sense. For thi§teps. A change in the amount of the average information
reason, mutual information must be introduced for a time Iaqlow from the mean fieldh. to a local map(i can be seen
n n+1

in either one of the variables to obtain a directional sense, . . itical value of the coupling,,~0.21, which is similar

€.9., to the interdependence measure. At other coupling strengths,
Qi) the tendencies are similar to that in Figb)l, and the points

_ S PUn,Jn-7 of phase transition, such as the straight lines, are matched for
Mis(7)= 2 P(in.in--)log, p()p(j) (1D both Figs. 1b) and Xd). Figure 3c) plots the average infor-

Xn_an

r= Yn—Yn

| e

Mu=i2j p(i,j)log,
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mation flow vse in heterogeneous, globally coupled loga- V. CONCLUSION
rithmic map lattices. The other conditions are the same as in
Fig. 1(d). A change in the value of the information flow is
observed where coupling.~0.035. Furthermore, once;

>0.035 the values of the average information flow increas
continuously and then gradually decrease. This pattern r

Z(\a/g;gleg img:n?;%?:‘?o?/vlgsF;\gf(ut?\.ctlizc;?]u;?tsg)c?):ml,ivns tirr]]etheentiating among phase areas. Furthermore, the time-delayed
g ping mutual information was used to investigate the amount of

one-dimensional, coupled-map lattices. The pattern dis- . ,
. . . : information flow from the mean field, to a local map
played in Fig. 4c) increases continuously after coupliag i

~0.03 and stays at high values after>0.03, as in Fig Xn+1- The interdependence measure and the information
4(b).. Finally, Fig. 5c) plots the average inf(.)rm’ation flow \./s flow display similar tendencies at every coupling strength,

e in homogeneous, globally coupled tent map lattices. Figuré:Emd both increase apparently after each critical coupling

5(c) clearly shows an abrupt increase in the amount of infor—:\,evi(;ze%'e-;hrﬁgifg{ ?)’f i(rjrl] %ﬁ'}?}g%Orrflf?é@n;:épthﬂeg:égsztz kée
mation flow after coupling strengté,~0.055, and reaching tem behavior y
the highest value eventually after=0.335, as in Fig. t). '
Other tendencies are matched well, such as three straight
lines in Fig. gb).

From the above, we believe that the change in NTCB
must be closely related to the amount of information flow The authors would like to thank the National Science
which flows from the instantaneous mean figldto a local ~ Council, Taiwan, ROC, for financially supporting this re-
mapXp. 1 - search under Contract No. NSC 91-2112-M-017-002.

This work has applied the interdependence measure to
four systems, and has very effectively quantified the non-
trivial collective behavior for each coupling. Numerical re-
Sults indicate that the interdependence measure is better than
§he method developed by Cisneretsal. for definitely differ-
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