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We apply the auxiliary-system approach to study paths to globally generalized synchronization in scale-free
networks of identical chaotic oscillators, including Hénon maps, logistic maps, and Lorentz oscillators. As the
coupling strength � between nodes of the network is increased, transitions from partially to globally general-
ized synchronization and intermittent behaviors near the synchronization thresholds, are found. The general-
ized synchronization starts from the hubs of the network and then spreads throughout the whole network with
the increase of �. Our result is useful for understanding the synchronization process in complex networks.
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I. INTRODUCTION

Synchronization has attracted much attention in recent de-
cades �1� and appears in a wide variety of mathematical
�such as coupled map models on lattices �2�, stochastic Kura-
moto model �3��, physical �such as laser �4�, Josephson junc-
tion arrays �5�, quantum systems �6��, physiological �7�, bio-
logical �8�, ecological �9�, chemical �10�, and financial
systems �11�. From the relationship among the components
of the system, synchronization can be classified into several
different categories. In complete synchronization �CS�, the
interacting components adjust their states so that they evolve
on an identical trajectory �12�. In the phase synchronization
�PS�, there exists some relations between the phases of inter-
acting components, while the amplitudes still remain irregu-
lar and, in general, uncorrelated �13�. Generalized synchro-
nization �GS� represents another degree of coherence, i.e.,
the emergence of some functional relation between the states
of interacting components �14�. Depending on different cou-
pling methods and coupling strengths, other types of syn-
chronization can also be observed; for instance, lag synchro-
nization �15�, anticipation synchronization �16�, reduce-order
synchronization �17�, and so on. These various degrees of
synchronization have been recognized as different expres-
sions of a universal conception �18�.

Although synchronization has been intensively studied,
the synchronization in complex networks still contains some
open and crucial questions �19�. Such a subject is to explore
how the collective behaviors in complex networks are influ-
enced by the complex topological structures �20�. The study
is important because in the real world, many networks sus-
tain dynamical process, and the interactions among elements
define the connections in the networks �21,22�. The emer-

gence of clustering or partial synchronization, where some of
the subsystems synchronize and the others do not, is another
peculiar feature represented in complex networks �23–25�. A
good understanding of the transitions from turbulent, partial
synchronization, to global synchronization would be benefi-
cial to realize the self-organization phenomena in nature
�25,26�, and give possible implications for neuroscience,
such as epilepsy �27�; notwithstanding the inherent interest
in the problem itself.

In this paper, we consider synchronization in scale-free
networks �SFN� �22,25� consisting of symmetrically �bidi-
rectionally� coupled chaotic oscillators. Although CS and PS
have been observed and well studied in SFN �25,28�, to our
knowledge, other levels of synchrony are still not detected or
well studied. Here we apply the auxiliary-system approach
�29,30�, to find GS in SFN, including the transitions from
partial GS �PGS� to global GS �GGS�. Our investigation re-
veals some dynamical importance. Besides a few specified
coupling strategies, CS is typically regarded as the form of
synchronization in coupled identical systems, while GS is
expected to be in coupled nonidentical systems �31�. How-
ever, the present work shows that GS appears in a network of
identical oscillators. Actually, the nonidentity among all
components is resulted from the heterogeneity in degree
�connectivity� which induces the distinct chaotic behaviors
of local mean fields. Numerical experiments show that the
nodes do not achieve GS simultaneously. In general, GS
starts from some hubs with highly connected nodes, then
spreads over the whole network from the nodes connecting
to hubs. Such results not only give us an insight into the
synchronization process but also provide a perspective to
understand the role of topological hubs in dynamic behavior
of synchronization in complex networks.

This paper is organized as follows. In Sec. II, we review
the transitions from partial GS to global GS in two mutually
�bidirectionally� coupled Hénon maps �32� with different pa-
rameters. Instead of using the continuous oscillators �30�, we
have demonstrated that discrete maps with bidirectional cou-
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plings can also reveal the cascade transitions. Two types of
dynamical behaviors called intermittent partial GS �IPGS�
and intermittent global GS �IGGS� are detected in the vicin-
ity of threshold coupling. The intermittent behaviors near the
synchronization thresholds are demonstrated to be the typical
on-off intermittency obeying a −3 /2 power law. In Sec. III,
the present idea is extended to SFN of chaotic systems.
Hénon maps, logistic maps, and Lorenz oscillators are
adopted as the local dynamics in our working models. We
present the results of the route toward global synchronization
and find that the scenario is intrinsically connected with the
topology of interactions. In Sec. IV, we discuss our results.

II. TWO MUTUALLY COUPLED
NONIDENTICAL MAPS

Consider two mutually �bidirectionally� coupled Hénon
maps �32� with different parameters. The formulations gov-
erning the evolution of the coupled subsystems are given by

x1�t + 1� = 1.4 − ��x1�t�x2�t� + �1 − ��x1
2�t�� + b1y1�t� ,

y1�t + 1� = x1�t� , �1�

x2�t + 1� = 1.4 − ��x2�t�x1�t� + �1 − ��x2
2�t�� + b2y2�t� ,

y2�t + 1� = x2�t� . �2�

Here (x1�t� ,y1�t�)T�v1�t� and (x2�t� ,y2�t�)T�v2�t� are the
vector states of the two subsystems, and �� �0,1� denotes
the coupling strength. Constants b1 and b2 are the chaotic
parameter of the Hénon map, and here we choose b1=0.1
and b2=0.3 to ensure the typical chaotic behaviors. The cou-
pling is diffusive.

We will use the auxiliary-system approach �29� to detect
the nonlinear correlations between two coupled systems. In
addition to the drive-response systems, the method has been
demonstrated to be available for mutually coupled elements
�30�. The method starts from creating two replicas of the
original subsystems. The vector states of the replicas v1��t�
� (x1��t� ,y1��t�)

T and v2��t�� (x2��t� ,y2��t�)
T obey, respec-

tively, the equations

x1��t + 1� = 1.4 − ��x1��t�x2�t� + �1 − ��x1�
2 �t�� + b1y1��t� ,

y1��t + 1� = x1��t� , �3�

x2��t + 1� = 1.4 − ��x2��t�x1�t� + �1 − ��x2�
2 �t�� + b2y2��t� ,

y2��t + 1� = x2��t� . �4�

Equations �1�–�4� show that subsystems 1� and 1 are driven
by 2, while 2� and 2 are driven by 1, but they evolve from
different initial conditions, v1,2�t0��v1�,2��t0�. The core of
such a method is the following: If the GS relation H1→2 is
constructed and unique, the phase trajectories of subsystems
2� and 2 would coincide after the transient dies out, where
H1→2 denotes a functional relationship v2�t�=H1→2�v1�t��.

Analogously, the construction of the GS relation H2→1
�v1�t�=H2→1�v2�t��� would result in the coincidence of tra-
jectories of subsystems 1� and 1. The auxiliary method thus
provides a much simpler criterion to measure the presence of
GS.

There is an interesting question: Do subsystems 1�-1 and
2�-2 become completely synchronized simultaneously? Or in
other words, are the GS relations H1→2 and H2→1 built at the
same coupling threshold? To explore such a problem, we
calculate the average synchronization error ��1,2�
= �1 /T��t=1

T �v1,2�t�−v1�,2��t�� as a function of �, as shown in
Fig. 1�a�. The figure is obtained by discarding long transients
�	106� and averaging over 100 different realizations with
random initial conditions. We also have a sufficiently large
value of T. In Fig. 1�a�, the symbols US, P, PGS, and GGS
correspond to the unsynchronized state, periodic state, partial
generalized synchronization, and global generalized synchro-
nization, respectively. When the coupling strength is ex-
tremely weak, both ��1� and ��2� are nonzero and it indicates
that two systems evolve independently and remain as the US
state. For �� �0.16,0.18�, the situation ��1�=0 and ��2�
�0 indicates the establishment of the formation H2→1 and
the absence of the reverse relation H1→2. Such an asymmet-
ric synchrony is recognized as the PGS. Afterward, for
�� �0.185,0.275�, the evolutions of subsystems are sup-
pressed and display the periodic motions, which can be con-
firmed by the negative global Lyapunov exponents �not pre-
sented� �33�. In this region, the global dynamics of two
coupled maps depending on initial conditions and coupling
strength presents synchronization behaviors or unsynchro-
nized iterations with phase slips. The above results show that
the transitions of the route, from PGS to GGS, are typical but
not unique. Other transitions, for example, PGS to P in our
case, is also possible. After ��0.275, two coupled Hénon
maps undergo the generic cascade from US, PGS to GGS
with the increase of coupling strength. Here GGS indicates
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FIG. 1. �Color online� �a� The average synchronization errors
��� and �b� the MCLE �c of two mutually coupled Hénon maps
with b1=0.1 �solid lines� and b2=0.3 �dashed lines�. The symbols
US, P, PGS, GGS, IPGS, and IGGS, respectively, correspond to
unsynchronized state, periodic state, partial GS, global GS, inter-
mittent partial GS, and intermittent global GS. The area
�� �0.16,0.18� corresponds to another PGS state.
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both relations H1→2 and H2→1 are well established.
The maximum conditional Lyapunov exponent �MCLE�

�c is another parameter to detect GS �31�. The negative value
of �c ensures the achievement of GS for a subsystem. Figure
1�b� shows the MCLE �c against � and gives a similar pic-
ture to describe the route from US to GGS. However, as we
can observe, the synchronized thresholds between Fig. 1�a�
and Fig. 1�b� are visibly different. More clearly, the synchro-
nization condition ���=0 is achieved while �c still remains
positive, as presented by meshed regions. Such a phenom-
enon is called the spurious synchronization �SS�, which is
arisen from the finite precision in numerical simulations �34�.
SS occurs when the system possesses a large contracting
region, especially for the discrete map �35�.

The coexistence of contracting and diverging regions not
only induces the artificial synchrony but also results in the
intermittent behaviors in the vicinity of the synchronization
threshold �36�. In our case, at �=0.52 the evolution of �1�t�
presents intermittent deviations from the synchronized state
�not presented�. In other words, the GS relationship H2→1
conserves most of the time, but it would be interrupted by
breaking of the functional relation during some time inter-
vals. No matter if H2→1 exists or not, the reverse relation
H1→2 is absent at such a coupling strength. We define this
asymmetrically intermittent relation as the intermittent PGS
�IPGS�, which is analogous with the intermittent GS �IGS�
reported previously �37�. Furthermore, near the transition to
GGS, H2→1 holds robustly while H1→2 remains unstable. We
define the phenomenon as the intermittent GGS, analogously.

The intermittent behavior of the synchronization error is
reminiscent of the on-off intermittency. To characterize the
statistical property of IPGS and IGGS, we analyze the histo-
gram distribution of laminar phases length �. The criterion
��t��10−2 is given to define the laminar phases or the off
states, and ��t��10−2 corresponds to the on states. We col-
lect the laminar phases until the SS is achieved, and perform
the collection repeatedly with different initial conditions. The
statistical distribution of laminar phases of �1�t� at �=0.52 is
shown in Fig. 2. The linearity of the logarithm-logarithm plot
suggests that the distribution obeys a power law with a uni-
versal exponent −3 /2 �34�. Such a −3 /2 law does not sensi-

tively depend on the choice of laminar phases criterion, and
it holds within the IPGS and IGGS areas. Therefore, both
IPGS and IGGS appear to be the on-off intermittency.

III. COUPLED IDENTICAL MAPS ON
THE SCALE-FREE NETWORKS

In this section, we extend the previous idea to a heteroge-
neously complex network. Consider a network consisting of
N nodes with the scale-free topology �22�. Each node stands
for a dynamical system, and links in the network represent
the interactions �or couplings� between nodes. First we
choose the Hénon map �32� as the local dynamics, and the
coupled maps network reads as

xi�t + 1� = 1.4 − ��xi�t�Xi�t� + �1 − ��xi
2�t�� + biyi�t� ,

yi�t + 1� = xi�t� , �5�

where the subscript i=1,2 , . . . ,N denotes the node index,
and the chaotic parameter bi=0.1, ∀ i. Xi�t�
��1 /ki�� j=1

N Cijxj�t� denotes the local mean field of the node
i, where Cij is an element of the N�N adjacency matrix C
that characterizes the topology of such a network. Elements
Cij take the value 1 when there is a connection between
nodes i and j with i� j and 0 otherwise �Cii=0�. The con-
nections are bidirectional; i.e., Cij =Cji and C is a symmetric
matrix. ki=� jCij is the degree of node i.

The adjacency matrix C is generated by using the
Barabási-Albert scale-free model �22�. Starting with a small
number m0 of fully interconnected nodes, a new node is in-
troduced to connect with m �m�m0� previous node at every
time step. The connection probability depends on the degree
of already-existing nodes �preferential attachment�. After l
time steps, the above algorithm creates a network with N
= l+m0 nodes. As a general feature, the connectivity distri-
bution follows a power law with an exponent constant �

3, regardless of m0 and m. To shed light on the relation
between underlying topology of interactions and synchroni-
zation processes, we concentrate on the network with a small
number of connections, the network with tree structure �m0

=m=1�, throughout this paper. In such a sparsely connected
network, the fully CS state, i.e., all the trajectories of Hénon
maps coincide with each other, is unrealizable for all values
of � �28�. Consequently, we focus on the weaker expression
of synchronization, the GS behaviors. The effect of a larger
m will be discussed later.

To investigate GS behaviors in a scale-free dynamical net-
work, we follow the idea of Sec. II to propose an auxiliary
system consisting of replicate nodes. The schematic descrip-
tion is illustrated in Fig. 3, where a replica and its corre-
spondingly original node share an identical formulation and
a common local mean field. The evolution of the auxiliary
system is then written as

xi��t + 1� = 1.4 − ��xi��t�Xi�t� + �1 − ��xi�
2 �t�� + biyi��t� ,

yi��t + 1� = xi��t� . �6�

The vector state of node i, (xi�t� ,yi�t�)T�vi�t�, and the rep-
lica (xi��t� ,yi��t�)

T�vi��t� evolve from different initial states
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FIG. 2. �Color online� The statistical distribution of laminar
phases in the IPGS region ��=0.52�. The slope of the reference line
�gray �red�� is −3 /2.
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which lie in the same basin of the attractor. By analogy with
previous statements, the coincidence of vi�t� and vi��t� indi-
cates the achievement of GS for the node i.

Now we look into the synchronization phenomena of the
network. The network size N=50 and an invariant coupling
configuration �will be represented later� are chosen through-
out the paper. We calculate the average synchronization error
��i�= �1 /T��t=1

T �vi�t�−vi��t�� as a function of the coupling
strength � over 100 realizations with random initial condi-
tions and a long transition T. Figure 4�a� presents our nu-
merical results for three different nodes i=2,22,48 with de-
grees k2=9, k22=3, and k48=1, respectively. The network
presents various collective behaviors against different �.

When interactions between nodes are weak, the ensemble
is dominated by the US state. In the region
�� �0.135,0.210�, where nodes show a variety of local dy-
namical behaviors, namely period, quasiperiodic, and even
chaotic motions, depending sensitively on the initial condi-
tions. Such a region is defined as the varied state �V�. If � is
further increased, one may find a discrete series for ��i� be-
coming zero at different �. As referred to above, the CS
relation between the node i and its replica ���i�=0� indicates
the emergence of the GS relationship between the node i and

its corresponding local mean field Xi. In our case, the node
i=2 is the first one being synchronized, and the node i=48 is
one of the latest nodes being entrained in terms of ascending
�, as shown in Fig. 5. Between the two extremes, some nodes
are entrained while the others are not, which defines the par-
tial GS state. Furthermore, when all the values of ��i� con-
verging to zero indicates that the functional relations be-
tween the nodes and their corresponding Xi are globally
established. In other words, the GGS state is achieved. With
the increase of �, Fig. 5 clearly shows the scenario from US,
PGS, to GGS in our working network. The high dependence
of critical coupling strengths upon the values of degree and
the topologically relative positions would be unveiled later.

The synchronization thresholds need to be confirmed fur-
ther by using MCLE. Due to the dependence of individual
dynamics on initial conditions, the average positive MCLE
��c

+� is calculated to determine the exact synchronization
thresholds �38�. The definition is given by

��c
+� =

1

M
�
j=1

�c�0

�c�j� , �7�

where �c�j� denotes the MCLE of the jth realization and
M =100 is the amount of realizations with different initial
conditions. Figure 4�b� illustrates the numerical results for
i=2, 22, and 48, where the condition ��c

+�=0 ensures the
achievement of GS for a node. The synchronization thresh-
olds determined by ��� and ��c

+� present a slight mismatch,
as aforementioned, which unveils the SS phenomenon exist-
ing in the coupled maps network. Near the synchronization
threshold, each node also displays the typical intermittent GS
behavior, i.e., the evolution of �i�t� irregularly shows bursts

Original Network

Auxiliary System

FIG. 3. �Color online� A schematic description of the auxiliary-
system approach to study the GS phenomena in a scale-free dy-
namical network. An auxiliary node �empty circle� and its corre-
spondingly original one �solid circle� are drawn by the same color.
The arrows indicate the coupling directions.
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FIG. 4. �Color online� �a� Average synchronization errors and
�b� average positive MCLE of the coupled Hénon maps network for
nodes i=2,22,48 with degrees k2=9, k22=3, and k48=1. The sym-
bols US, V, PGS, GGS, IPGS, and IGGS, respectively, correspond
to unsynchronized state, varied state, partial GS, global GS, inter-
mittent partial GS, and intermittent global GS.
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FIG. 5. �Color online� The diagram shows the average synchro-
nization errors ��i� between the coupled Hénon maps network and
its replica as a function of coupling strength � for 1� i�50, where
the notation i denotes the node index. The color spectrum represents
different values of ���. The exact synchronization thresholds deter-
mined by ��c

+� are labeled by a dashed line.
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deviating from the roughly synchronized state. Simulta-
neously, the histogram distribution of time intervals between
two sequent bursts emerges a −3 /2 power law, being identi-
cal to the one in the two coupled maps case. In other words,
the dynamics represents the typical on-off intermittency.

The synchronization thresholds, determined by average
positive MCLEs, of all nodes are represented in Fig. 5 by a
dashed line. Note that for any two connected nodes, they are
not entrained simultaneously regardless of the bidirectional
couplings. The nonidentity of synchronization thresholds re-
sults from the heterogeneity in degree which induces the dis-
tinct chaoticity of local mean fields of all nodes. In particu-
lar, the highest connected nodes �hubs� are more easily
entrained than the others with sparse connections, as de-
picted in Fig. 6 �circles�. However, as one can observe in Fig.
6, the dependence of �c on k is both nonmonotonic and non-
universal. To explain the reason for this phenomena, we in-
vestigate the impact of the topological property on the syn-
chronization process and plot the evolution of dynamics
toward GGS in Fig. 7. The underlying topology of the net-
work used throughout this paper is drawn by empty circles
�nodes� and gray lines �interactions�. The nodes having
achieved the GS are denoted by black circles, and the con-
nections between them are replaced by black lines. From top
to bottom, the three diagrams show different synchronization
patterns in terms of ascending �. For a complex network with
heterogeneous connectivity, those units with much larger de-
gree are entrained first and then, in a sequential process of
increasing �, assimilate the nodes connected to them. In
other words, the GS starts at some central hubs and spreads
from them, finally throughout the whole network. Our results
not only confirm that hubs play the leading and essential
roles in self-organizing toward global synchronization, but
also generalize the conceptions in �39�, where periodic oscil-
lators and CS clustering behaviors are concentrated.

The aforementioned transition scenario persists in the net-
works with other sizes �the largest size we have investigated
is N=1000� and different realizations of the adjacency matrix

C. Besides concentrating on the scale-free network with tree
topology �m=1�, we have studied the effect of the larger m.
For m�1, as a result of more compactly topological struc-
ture, the individuals achieve GS at smaller coupling
strengths. Moreover, the variances of synchronization thresh-
olds of nodes have diminished for a larger m �m	3�. That is
to say, when the network becomes more compact, the nodes
are entrained almost at the same �, and the region represent-
ing the PGS behavior withers accordingly. Finally, after m
	7, the coupled maps show fully CS when � exceeds a
corresponding threshold �in our case, �c�m=7�	0.92�.

The route from PGS to GGS can also be observed in
tree-type networks consisting of other chaotic elements,
ranging from discrete maps to continuous oscillators, with
different types of coupling functions. For example, a coupled
one-dimensional map network is given by

xi�t + 1� = �1 − ��f„xi�t�… + �Fi�t� , �8�

where node index i=1,2 , . . . ,N. The coupling term Fi�t�
��1 /ki�� j=1

N Cijf(xj�t�) is the local mean field of node i and
the adjacency matrix C shares an identical topology with the
network drawn in Fig. 7�a�. The function f(x�t�) which gov-
erns the local dynamics is chosen as the well-known logistic
map

f„x�t�… = 
x�t��1 − x�t�� , �9�

where 
=4 ensures all elements representing typical chaotic
behaviors. The auxiliary model to unveil GS behavior in a
coupled logistic maps network then is formulated as

xi��t + 1� = �1 − ��f„xi��t�… + �Fi�t� . �10�

The two networks evolve from different beginnings, i.e.,
xi�t0��xi��t0�, ∀ i. The synchronization errors between the
maps and their auxiliary partners are calculated and plotted
against the coupling strength in Fig. 8. The dashed line
marks the boundary between the unsynchronized state and
the GS state of each node. In this diagram, one finds a clear
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FIG. 6. �Color online� The values of synchronization threshold
�c are shown as functions of the degree of nodes. Symbols represent
the results of the network consisting of different dynamics, i.e.,
Hénon maps �circles�, logistic maps �crosses�, and Lorentz oscilla-
tors �triangles�. The left-hand tick marks label the threshold values
for Hénon maps and logistic maps, while the right-hand tick marks
are for Lorentz oscillators.
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FIG. 7. Typical path to GGS in a scale-free network with nodes
and coupling between nodes shown as empty circles and gray lines,
respectively. There are N=50 nodes in this network and the hub has
degree k=8. The entrained nodes are denoted by black circles, and
the connections between them are replaced by black lines. As one
can see, the GS starts from some central hubs, and then spreads
throughout the network with the increase of �.
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cascade of transitions from disorder to partial and then global
order by increasing the interacting strength. The crosses in
Fig. 6 depict synchronization thresholds �c as functions of
the degree of nodes. The intrinsic order toward self-
synchronization, which is similar to Fig. 7, reveals high de-
pendence upon the geometrical properties, i.e., the degree
and the spatial location of nodes on the network.

Finally, we study the network of continuous chaotic oscil-
lators. The mutually coupled Lorenz oscillators �40� on a
scale-free network reads as

ẋi = ��yi − xi� + ��Gi − xi� ,

ẏi = rxi − yi − xizi,

żi = − bzi + xiyi, �11�

in which i=1,2 , . . . ,N, �=10, b=8 /3, r=50, and Gi
��1 /ki�� j=1

N Cijxj is the local mean field of the ith node. Ana-
logically, its auxiliary model is given by

ẋi� = ��yi� − xi�� + ��Gi − xi�� ,

ẏi� = rxi� − yi� − xi�zi�,

żi� = − bzi� + xi�yi�. �12�

Figure 9 shows ��� between the original Lorenz network and
its replica as a function of � for all i. For ��10, the global
dynamics represents the monotonous US behavior �not pre-
sented�. The results in the diagram also unveil the nontrivial
feature of transitions from partial to global synchronization
in scale-free dynamical networks. The dependence of syn-
chronization thresholds �c on the degree of nodes k is plotted
in Fig. 6 as triangles.

IV. CONCLUSION

Most of the previous studies of GS have focused on two
unidirectionally coupled nonidentical systems, which reveal
a stable, refined, and smooth functional relation. In the
present paper, the auxiliary-system method has been applied
to detect the GS behavior in mutually coupled maps and
scale-free networks of chaotic elements. We have demon-
strated that coherence with such a level is realizable in both
systems. Two types of dynamical behaviors, namely IPGS
and IGGS, are detected near the synchronization thresholds.
Furthermore, these intermittent behaviors are shown as the
typical on-off intermittence with the typical exponent −3 /2.
The detailed analysis shows that the dynamical process to-
ward synchronization represents the transitions from partial
to global GS. With respect to the heterogeneously dynamical
networks, paths to global synchronization reveal a cascading
order highly depending on topological properties. Our results
show that GS starts from some central node with a large
number of degree, or hub, then distributes over the whole
network by asynchronously grouping the nodes connecting
to them.

It should be emphasized that the GS behavior detected in
the network indicates the existence of a functional relation-
ship between a node and its local mean field, rather than the
explicit coherence between any two nodes. The PGS state in
networks then defines the situation in which some nodes
have been entrained �by local mean fields� while the others
have not. Analogously, the GGS indicates that functional re-
lations between the nodes and their local mean fields have
been globally established. Actually, we have applied the non-
linear measurement, the interdependence �41�, to detect the
coherent relationship among the dynamics of nodes. When
all nodes are entrained, we found several classes of correla-
tion among them. First, the two connected nodes are weakly
and asymmetrically dependent. Second, all nodes with k=1
and connected to the same node are completely synchro-
nized. Otherwise, any two unconnected nodes which do not
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FIG. 8. �Color online� Average synchronization errors ��i� be-
tween the coupled logistic maps network and its replica vs � for
1� i�50. Notations follow Fig. 5.
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connect directly with the same node evolve almost indepen-
dently.

It is important to point out that the PGS transition is ob-
served for sparsely connected networks, especially the one
with the tree structure, but is difficult to identify when the
number of connections increases further �in our case m	3�.
Although the transition scenario can be regarded as a specific
feature in treelike heterogeneous networks, in nature there
are many real systems belonging to this category, such as the
brain functional network �42�. The paths to synchronization
then provide us insight into the synchronization process in
these systems. In brief, the topological hubs of the heteroge-
neous networks also play the essential role in the process of
synchronization.

Very recently, Bag, Petrosyan, and Hu �3� studied the in-
fluence of various noises on the synchronization of the sto-
chastic Kuramoto model. It is of interest to put the stochastic
Kuramoto model or other models on SFN and to study the
influence of various noises on the paths to synchronization of
such models on SFN.
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